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FUNCTIONAL RELATIONSHIPS BETWEEN
DENUDATION, RELIEF, AND UPLIFT IN LARGE
MID-LATITUDE DRAINAGE BASINS '

FRANK AHNERT

Department of Geography, University of Maryland,
College Park, Md. 20742

ABSTRACT. The mean denudation rate in mid-latitude river basins is directly
proportional to mean basin relief. Mean annual precipitation has no noticeable- effect
upon the denudation rate. Without any uplift, the relief is reduced to 10 percent of
its initial value in 11 m.y.; with isostatic compensation, this time increases to at least
18.5 m.y. Establishment of a steady state relief {Hack, 1960) would require a constant
rate of uplift for more than 20 m.y. and thus is uniikely to occur. Oscillating rates of
uplift cause corresponding oscillations of relicf. The quantitative relationship between
uplift, relief, and denudation may permit order-of-magnitude estimates of current
rates of uplift.
INTRODUCTION

The influence of the available relief upon the rate of denudation is
a fact familiar even to the casual observer who compares the rushing
power of a mountain torrent with the quiet flow of a lowland brook. The
greater the relief, the steeper are, as a rule, the slopes, and the more
rapid is the downhill transport of waste and thus the downwearing, or
denudation, of the land. Equally obvious is the fact that uplift, by itsell,
tends to increase the relief and thus exerts an indirect influence upon
the rate of denudation, too. .

This paper attempts to shed light on the more difficult question .of
the quantitative relationship between these variables. Even the measure-
ment of their numerical values is beset with problems. Relief can be de-
termined easily enough from topographic maps; the investigator merely
has to decide whether to define it as the elevation difference within a
standard areal unit (for example, 1.0 km?), within a drainage basin of a
given order, or between an individual interfluve and the adjacent valley
bottom. Much harder to assess is the rate of denudation, partly because
it is very slow compared to the human time scale, and partly because it
is so sensitive to environmental change that the instrumentation used to
measure the denudation on slopes can interfere with, and thus modify,
the process itself. Similarly, only the most rapid rates of present uplift—
as for example the glacio-isostatic uplift of northern Sweden—can be
measured by direct observation. The much more common slower rates of
uplift have to be inferred from indirect geological evidence which usually
provides an indication of the mean rate of uplift over a longer span of
geologic time.

In order to avoid the pitfalls of direct denudation measurement on
slopes, the rate of denudation is usually derived from the determination of
the sediment transport of streams. All rock material that passes through a
particular cross section of a stream originates from the portion of the
drainage basin that lies upstream [rom the cross section, and conversely
all rock material that is transported out of the drainage basin segment

. will pass through this cross section, barring any transport across the
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perimeter of the basin by wind or groundwater. Sediment load measure-
ments yield a value for the total weight of rock material removed [rom
the drainage basin per unit time, which can be converted into the mean
denudation rate through division of the weight by the basin area, and
through [urther conversion [rom weight to volume, and thereby to thick-
ness, of rock material removed. Apart from the fact that this method
supplies only an average rate of denudation for the entire drainage basin
and does not distinguish between rates of stream erosion, slope denuda-
tion, and summit lowering, it also is based on the tacit assumption that
the rate of rock waste production, and of transport of that waste, within
the drainage basin is during the short period of measurement in equili-
brium with the rate at which this rock material is removed from the
basin. This assumption is riot necessarily justified. Nevertheless, the
method of determining denudation by way of sediment yield remains the
best one to date.

~ Among previous studies of sediment transport by streams those of
Schumm (1956, 1963) have paid special attention to the effect ol relief
upon sediment load and thus upon average denudation rates. Working
mainly with small drainage basins, Schumm has consistently obtained a
quantitative relationship in which the rate of denudation increases ex-
ponentially with increasing relief. Ruxton and McDougall (1967), in a
study of denudation rates on thie slopes of the Hydrographer’s Volcano in
New Guinea, show a linear relationship between relief and denudation.
This does not, however, invalidate the findings of Schumm; Ruxton and
McDougall define relief as depth of valley incision into the slopes of the
volcano and measure denudation as the volume of material removed by
this same valley incision. Thus the local relief, in their study, is perceived
as a function of denudation rather than vice versa.

Schumm’s stream load data are derived, for the most part, [rom the
sediment accumulation rates of small reservoirs and thus include dis-
solved load only to the extent to which it may have precipitated out of
solution in the reservoir, Possibly such precipitation amounts only to a
small part of the actual dissolved load, so that the load measured repre-
sents mainly the suspended load and the bedload. In that case, the ex-
ponential relationship between measured sediment load and relief does
not necessarily reflect an exponential relationship between denudation
and relief. The share of dissolved load in percent of total load tends to

decrease with increasing relief, since with increasing relief also the sur-

face runoff increases at the expense ol infiltration, and a higher propor-
tion of surface runoff causes more intensive erosion of particles by surface
wash and by the higher flood discharges of streams. The increase of solid
load with increasing reliel may thus well be exporential, but this rela-
tionship is probably in part offset by a relative decrease of the dissolved
load, so that the total load would increase less rapidly with increasing

relief than Schumm’s curves suggest.

Besides this problem of measurement, there are several environ-
mental factors that add complications to the relationship between relief
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and denudation. For example, climate exerts an effect upon denudation
both directly through the action of temperature and precipitation and
indirectly through the vegetation.cover it supports. Pelter (1950) has
tried to show diagrammatically the relative intensity of denudational
processes as a function of mean annual temperature .anc.l mean an;?ual
precipitation. Since the processes aré not shown .quantitatively, and since
the magnitude and frequency of climatic events (Wolman and Miller,
1960) has greater bearing on the intensity of .morphological processes
than mean annual values, Peltier's diagrams cannot give a sufficiently de-
tailed description of the effects of climate. Langbein and Schumm (1958)
have presented a study of the quantitative relationship between sediment
load and annual precipitation, according to which the maximum. sedi-
ment yield occurs in areas of 250 to 300 mm (10-12 in.) annual rainfall,
and the load decreases rapidly with both higher and lower preciptation.
The seasonal distribution of rainfall is not considered, and load measure-
ments are confined to the solid load. The latter's decrease with higher
rainfall may be at least in part compensated by an accompanying increase
of the unmeasured dissolved load. - .. : S ‘ P

When the range of relief values is great, the morphologically effective
factors of climate themselves vary as Functions of the relief and thus im-
plicitly enter into the denudation/relief relationship. Areas of high
relief encompass a great range of altitudes and hence may reach through
several altitudinal climatic zones, Above the timberline, processes of
weathering and denudation tend to be more intensive than below it. ‘The
sediment yield of drainage basins that include, because of their high
relief, sizable areas above the timberline could thus be disproportionately
higher than the sediment yield from lower-relief basins whose divides are
forest-covered. OF course, this effect is one of altitude rather than relief:
an upland that lies entirely above the timberline would be subject to
more intensive denudation than a basin that has the same relief but lies
below the timberline.

Lithologic differences create additional problems. The presence of
rocks of varying resistance to weathering causes variations in the denuda-
tion rate. This is particularly important in the case of small drainage
basins that lie on only one or two types of rock. With increasing size,
the basins usually contain a greater variety of rock types whose different
resistances are likely to balance out so that the effect of lithologic differ-
ences upon the total sediment lead becomes neutralized.

Another cause of different total sediment yield from basins having
the same relief lies in the varying proportion of stream corrasion as com-
pared to hillslope denudation. In a largely flat plateau landscape dis-
sected by widespaced streams that flow in deep, narrow gorges, the main
part of the sediment load of these streams is derived {rom the corrasion
of their beds and from the sides of their gorges—little or nothing from the
interfluves. By contrast, in a densely dissected landscape in which the
streams have ceased to cut down, most of the sediment yield is derived
from the denudation of the slopes and from the lowering of the inter-
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fluves. Presence or absence of recent uptlift, and the latter’s rate, will also
influence the amount of load produced by corrasion of the stream beds.

Finally, the effects of man’s works on the Iand surface must not be
overlooked. Removal of the natural vegetation and disturbance of the
natural soil structure for purposes of agriculture or large-scale construc
tion projects tend to increase the detrital sediment yield from the slopes
and interfluves. Covering the natural, permeable soil surface with im-
permeable pavements, roofs of buildings, et cetera protects the surface
from denudation, increases surface runoff at the expense of infiltration,
heightens the flood discharge of streams, causes greater frequency of
stream floods, and hence encourages stream erosion. On the other hand,
canalization of streams and artificial paving of their beds and banks in-
terferes with natural processes of erosion and corrasion. The works of
man have not been widespread long enough to have caused more than
very local changes in the reliel. However, the sediment yields measured
in inhabited areas reflect these changes; the current rate of denudation
computed from these sediment yields is thus not necessarily representa-
tive of the rate of denudation that existed in the same areas over the
last several thousand years.

Mindful of the complex interplay of all these factors, an attempt will
be made here to investigate the relationship between denudation, relief,
and uplift, and to assess its significance for the morphological develop-
ment of landscapes on the basis of available data from twenty river basins
that range in area from several hundred square kilometers to over 100,000
km?. The large size of these basins goes far to insure that lithologic dif-
ferences may be neglected. All basins lie in the middle latitudes of the
northern hemisphere, between about 32°N (Flint River, Georgia) and
52°N (River Thames, England). Half the basins are located in the
western United States, the other half in the humid eastern United States
and in western Europe. Mean annual precipitation ranges from less than
250 mm (west of the Rocky Mountains) to more than 2500 mm (in the
Alps), but none of the basins selected has the pronounced seasonality of
precipitation that characterizes the monsoonal, mediterranean, and low-
latitude subhumid and semiarid rypes of climate. Thus the data permit
also some assessment of the possible influence of annual precipitation
upon denudation rates.

THE DATA AND THEIR EVALUATION

The mean rates of denudation of the twenty river basins are listed
in table 1. They had to be taken from several sources, in order to insure
that a wide range of both relief values and denudation rates would be
included. There are some differences, from source to source, in the
method of computing the denudation rates. For example, Leopold, Wol-
man, and Miller (1964, 1. 76) consider only the dissolved and suspended
loads, Judson and Ritter (1964) estimate the bedload at 10 percent of
the total detrital load, whereas Corbel (1959) uses specific values for the
bedload. Corbel determines mean annual runoff from a river basin by
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subtracting’ evaporation (either measured or estimated) from precipita-
tion, and then multiplies the sampled load per unit of discharge by this
runoff figure, in order to obtain the total annual load. Leopold, Wolman,
and Miller, on the other hand, estimate the total annual load as the
product of sampled load times measured mean annual discharge of the
river, without resort to precipitation and evaporation. For conversion of
the weight of the sedimént load into amounts of mean denudational low-
ering of the land surface, Corbel assumes a mean specific weight of 2.5;
Judson and Ritter use 2.64. Corbel’s value of 2.5 appears more suitable
for the large river basins considered here, which contain a variety of
rock types including relatively light sedimentary rocks.

TaABLE 1

Mean relicf Mean sine  Mean denudation
h

of rated
River basin (m) slope {mm /1000 yrs)
Flint River above Montezuma, Ga. 89 0.033 28
Colorado River above San $aba, Tex. 102 0.020 16
River Thames above London, England 159 0.022 16
Delaware River above Trenton, N.J. 299 0.052 42
Canadian River above Amarillo, ‘Tex. 353 0.071 52
Little Colorade River above Woodruff, Ariz. 392 0.056 31
Juniata River above Newport, Pa. 490 0.089 41
Green River above Green River, Utah 644 0113 82
Escalante River, Utah 342 0130 135
Dirty Devil River, Utah 912 0.106 177
Bighorn River above Thermopolis, Wyo. 1004 0.138 109
Colorado River above Cisco, Utah 1040 0.134 124
Wind River ahove Dubois, Wyo. 1091 0.132 115
Animas River above Farmington, N. Mex. 1273 0.150 195
Sarine, Switzerland 1395 0.287 210
Rhine above Lake Constance, Switzerland 1994 0.410 321
Isére above Grenoble, France 2046 n.m. 287
Reuss above Lake Lucerne, Switzerland 2320 0.345 300
Kander, Switzerland 2428 0.401 430
Rhone above Lake Geneva, Switzerland 2869 0.361 418

n.m. — not measured.

Denudation rates after Corbel (1958), Louis (1961), Wolman and Miller (1961),
Lecpold, Wolman, and Miller {1964), Judson and Ritter (1964), Jorns, Hembree, and
Oakland (1965).

The solid material removed from the surface by mechanical denuda-
tional processes is soil rather than rock and normally has a specific weight
of less than 2.0 because of greater pore volume and expansion of mineral
grains by chemical weathering. However, it is safe to assume that for long
periods of denudational surface lowering the soil thickness at any locality
remains approximately constant, since the processes of weathering and of
removal tend toward a state of dynamic equilibrium (Gilbert, 1877; Jahn,
1954; Ahnert, 1954, 1967). The lowering of the soil surface thus tends to
be equal to the lowering of the bedrock surface underneath by weather-
ing and by partial removal of mineral matter in solution. As Judson and
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Ritter (1964) have pointed out, solution of bedrock, which contributes to
the dissolved sediment load, should be interpreted as a part of the com-
plex process of denudational surface lowering. Consequently, whenever
dissolved load is considered together with the detrital load, the density of
the bedrock rather than that of the soil must be used for estlmatmg the
average rate of lowering of the land surlace.

For the denudation rates in table 1, the values of Corbel were ac-
cepted directly as he gives them, in millimeters of surface lowering per
1000 yrs. Additional data listed from various sources by Louis (1961),
also in mm/1000 yrs, match well with those of Corbel and were also in-
cluded as given. The other sources indicate the amounts removed in tons
per square mile. These data were converted into mm/1000 yrs using Cor-
bel's assumed mean specific weighit of 2.5

The mean relief for each river basm was determined as the average
of the reliefl measured in regularly spaced sample areas, each sample area
being a 20 x 20 km square. The number of sample areas for each basin
varies according to the size of the basin, and their spacing was set with
the aid of geographical or of grid coordinates on the maps used (scale at
or near 1:250,000). The large size of each sample area virtually guarantees
that the area includes both valley bottom and interfluves and thus per-
mits determination of the relief. Since there is no systematic relationship
between map coordinates and drainage pattern, the regular spacing of
sample areas is as adequate as a random spacing would have been.

Schumm (1956, 1963} has expressed preference for the use of the
relief ratio (total basin relief divided by basin length) instead of the
relief by itself. The relief ratio is a dimensionless number and as such
useful for comparing the relief of drainage basins of varying size. It serves
well for the very smalil basins Schumm has studied, because the morpho-
logical character of the terrain does not change much within these basins,
However, the relief ratio is too coarse a measure for the large basins listed
in table 1. For example, the Canadian River above Amarillo, Texas, and
the Colorado River above Cisco, Utah, have very nearly the same relief
ratio (0.0094 and 0.0097, respectively) but differ greatly in their mean
denudation rates, because mountainous terrain, with high local relief and
steep slopes, occupies only a small part of the Canadian River basin but
a very large part of the Colorade River basin. This difference, so im-
portant for the sediment load to be expected in these two rivers, ex-
presses itself clearly in the different mean relief values of the two basins
in table 1 and demonstrates that, for the purpose of the present study,
the mean basin relief as defined is a more suitable measure.

Also determined for each sample square was the mean slope accord-
ing to the method of Wentworth (1930), by counting the contours that
cross two 20 km traverses, one north-south, the other east-west. The
traverses bisect one another in the center of the square. The mean slope
(tangént) of each drainage basin is the average of the mean slope values

of the sample squares. The tangent data have been converted to the

corresponding sines and are so listed in table 1, because the force of
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gravity on slopes is proportional to the sine rather than to the tangent.
In practice, this difference is only significant for steep slopes.

As the first step in the quantitative evaluation of the data, the sine
of the mean slope is compared with the mean basin relief h (fg. 1). The
relationship appears clearly linear between h = 0 m and h = 1100 m but
less clearly so in the few cases of higher relief. The residuals tend to in-
crease with increasing relief for geometrical reasons as shown in figure 2.
When the residuals are expressed in percent of the estimated sine, this
trend disappears. Presumably, individual observed values deviate [rom
the regression line of figure 1 because of variations in the spacing of
valleys. Of the ten river basins located west of long 100°—in the drier
part of North America—eight have observed mean sine values that are
smaller than those estimated, indicating a tendency toward wider spac-
ing of valleys in areas of drier climate.

Figure 3 shows the correlation between denudation rate and mean
basin relief. The distribution of residuals suggests that the relationship
between these two parameters is linear. Significantly, neither the sign
nor the magnitude of the residuals can be explained by differences in
annual rainfall: five of the western American river basins have positive
residuals, the other five have negative ones, and the observed denudation
rates for the ten basins from the humid eastern United States and western
Europe are also equally divided by the regression line of figure 3. The
data thus imply that there is no relationship between mean annual pre-
cipitation and the rate of denudation.*

1 For basins of this size, the basin arca does not appear to have a significant effect,
either; this contrasts with the findings of Langhein and Schumm for very small drainage
basins.
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Fig. 2. Relationship between relief, spacing of valleys, and numbers of contours
crossed along traverses of equal length (schematic). The number of contours crossed
{and with it the mean slope) is proportional to the product of relief and valley density.
This explains why on figure 1 larger residuals occur in areas of high relief than in
areas of low relief.

A comparison of the denudation rates of Ruxton and McDougall
(1967) from the Hydrographer’s Volcano in New Guinea with those of
figure 3 appears also to confirm the absence of an appreciable effect of
mean annual precipitation. The volcano, 1887 m high, lies 20 km from
the coast; mean annual precipitation ranges from 2250 mm at sea level
to 3000 mm at the summit. The study of Ruxton and McDougall has been
confined to the seaward slope of the volcano, so that the height of the
mountain is approximately equivalent to the relief within a 20 x 20 km
square enclosing their study area. With h = 1887 m in the regression
equation of figure 3, one obtains a denudation rate d = 279 mm /1000 yrs;
the average of all Jocal denudation rates listed by Ruxton and Mc-
Dougall is 336 mm/1000 yrs, only 20 percent higher than the estimated
value, despite the fact that their method of determining denudation rates
is entirely different from that employed here.

It seems, therefore, that the rapid removal of waste by the rare, but
mntensive runoff over little-protected soil in the dry western United States
is just as effective an agent of denudation as the slower, but more con-
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Fig. 3. Relationship between mean denudation rate and mean relief.

tinuous waste removal processes in the humid eastern United States, in
western Europe, or in New Guinea. The difference lies less in the amount
removed than in the mode of removal. The rivers of the western United
States carry only a small percentage of their total load in solution,
whereas the dissolved load of the rivers in humid areas accounts frequent-
ly for more than half the total load.

Instead of mean annual precipitation, it is the seasonality of rain-
fall that affects the denudation rate. Corbel (1959) has shown that areas
with strong seasonal variations of precipitation tend to have higher
denudation rates than those with less rainfall seasonality. The long dry
season of the monsoon climate, the mediterranean climate, and the
tropical savanna and steppe climates leaves the ground bare and vulner-
able to erosion by the often heavy rains of the wet season. Although the
twenty river basins considered here vary greatly in annual precipitation,
they lack such pronounced seasonality. For these basins and for the mid-
latitude belt of more or less evenly distributed rainfall they represent,
relief alone suffices to explain about 96 percent (r?) of the observed varia-
tion in the denudation rates.

DENUDATION AND THE REDUCTION OF RELIEF

The regression equation of figure 3,
d = 0.0001535h — 0.01088 (m /1000 yrs)

suggests that d = 0 for h = 70.88 m, which may be rounded up to h =
71 m. If this value is entered in the regression equation of figure 1, one
obtains sin @ = 0.01565. Theoretically, this means that no stream load is
likely to be transported out of the drainage basin if the mean slope of
the basin is less than 0°5338”. Since there is always a possibility of load
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removal in solution as long as there is a gradient that allows water to
flow out of the area, one must conclude that the small constant minus
0.01088, which determines the magnitude of this lower limit of the mean
basin relief, is the result of some slight accidental scatter of the data,
rather than of physical necessity. Even if it were accepted as real, one
might still argue that, although no material leaves the basin, denudation
may continue on the higher points, and the rack waste may be trans-
ported to the lower points within the basin itself, so that the relief is
further reduced. Because of its smallness and probable [actitiousness, the
constant may be omitted without serious loss: the equation then reads

d = 0.0001535 h/1000 yrs

and is independent of the units of height measurement used.

The mean denudation rate ¢ is rather unsatislactory as a direct
measure of relief reduction, that is, of the lowering of the summits rela-
tive to the valley bottoms. Where erosional deepening of valleys is nil,
the denudation rate on the lower parts of the slopes is probably smaller
and on the upper parts probably larger than the mean rate. As a first
approximation, one may expect the mean rate to be present halfway be-
tween valley bottom and divide and the actual local denudation rate to
increase linearly from zero at the valley bottom to twice the mean rate
at the summits (fig. 4).

Fig. 4. A. Relationship berween mcan denudation rate d and rate of summit
denudation d,. in the absence of stream incision (schematic).

B. Relationship between mean denudation rate d, summit denudation rate d,
and rate of stream incision u (schematic).

A further complication arises from the diitering amounts of stream
erosion in the various basins. Erosion in excess of the removal of material
transported to the stream by slope processes adds to the total sediment
load and thus to the mean denudation rate of the basin. Some rates
plotted in figure 3 are probably higher than they would be in the absence
of such erosion, and the same is true {or the regression coefficient. How
much lower that coefficient would be if there were no significant deepen-
ing or lateral shifting of valleys in any of the basins can only be sur-
mised by a consideration of the lower limit of denudation values in
figure 3. The four relatively largest negative residuals, expressed in per-
cent of their respective estimated denudation rates, are minus 24, minus
27, minus 35, and minus 38 percent, with a mean of minus 31 percent.
If these values may be considered to represent the approximate mean
denudation rates that are to be expected in basins without significant
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stream erosion, then it is reasonable to assume that for such basins the
regression coefficient of the estimating equation also would be about
81 percent lower than the coefficient of figure 8, so that the equation
becomes

d = (1 — 0.31) 0.0001535 h /1000 yrs = 0.000106 h /1000 yrs.

Obviously, stream erosion is only one of many factors to affect the
magnitude of mean regional denudation rates. Nevertheless, it probably
ranks second only to relief in importance, since it is influenced by a wide
range of environmental conditions, including the existing relief. The
long-term effect of vertical stream erosion, namely, a lowering of valley
bottoms relative to summits, and thus a retardation of relief reduction or
even an increase in relief, will be discussed later, in conjunction with the
role of uplift.

For the rate of summit denudation d, = f(h), and thus of relief reduc-
tion in the absence of vertical stream cutting, the preceding discussion
suggests four possible estimating equations:

The rate directly derived from figure 3, d, = 0.0001535 h/1000
YIS. _

2. A rate twice as high, in order to comply with the conditions of

figure 4, that is, d; = 0.000307 h/1000 yrs.

3. The rate obtained as probable lower limit of denudation values

in figure 3, d, = 0.000106 h/1000 yrs.

4. A rate twice as high, in compliance with figure 44, d, = 0.00021

h /1000 yrs. .

Of these four, the last is the only one that combines the attempt to
eliminate the effects of stream erosion with the adjustment suggested by
figure 4A and therefore seems the most probable estimating equation for
the general case of relief reduction in a fluvial mid-latitude landscape
without vertical stream erosion and without pronounced seasonality of
precipitation. Its coefficient lies virtually halfway between the extremes
represented by the second and third equations above and close to the
arithmetic mean of all four coefficients. Over longer time spans, this rate
of relief reduction cannot be extrapolated linearly, since the relief h
itself declines progressively. Rather, it then becomes d, = (1 — 0.99979%)
hi/n thousand yrs; for 1 m.y., d, = 0.189 h. The time t (in millions of yrs)
required to reduce the initial mean basin relief h to a lesser relief h,
is then

logh; —logh
log (1 —0.189) *

A relief reduction from h to h, = 0.1 h requires approximately 11
m.y. and from h to h, = 0.01 h, 22 m.y. (dashed curve in fig. 5.)* This
estimate contains the assumption that downwearing of summits starts im-
mediately, at time zero. If paraliel retreat of slopes is assumed instead

*Wirth the other threc coeflicients, the times required to reduce the relicf to 0.1 h
are about 15 my. (for d, — 0.0001535 h/1000 yrs), 7.5 m.y. (for d, = 0.000807 h/
1000 yrs), and 22 m.y. {for d, = 0.000106 h/1000 yrs). For a rclief reduction from h to
0.01 h these time requirements double.
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Fig. 5. Time needed for relief reduction (schematic).

of predominant downwearing, there may be an initial period of time
in. which interfluves and divides are narrowed without being much
lowered, so that the total amount of time needed for relief reduction
would be even greater,

EFFECT OF ISOSTATIC COMPENSATION

According to the theory of isostasy, the Earth's crust “Hoats” on the
mantle, so that a removal of material rom the surface must be com-
pensated by uplift in order to maintain, or rather to reestablish, isostatic
equilibrium. Isostatic uplift would probably be discontinuous, setting in
after the weight of rock material removed has exceeded a certain thres-
hold value (Schumm, 1963). However, for an estimate of long-term effects
one may assume that the adjustment takes place continuously. If the
mean density of the removed rock material is 2.5, and that of the upper
mantle, in which the crust is partially immersed, is 5.5, the rate of denuda-
tion-induced isostatic uplift is

2.5 d

3.3
where d is the mean rate of denudation. Let it be assumed that the major
streams in the drainage basin keep pace with the isostatic adjustment by
cutting their channels down at the same rate u at which the land is up-
lifted, that the summits are worn down at the rate d, = 0.189 h /1,000,000
yrs, and that d = 0.5 d.. The net rate of relief reduction is then d, — u =
0.117 h/1,000,000 yrs. At this rate, the relief is reduced to 10 percent of
its initial value in 18.5 m.y. and to 1 percent in 37 m.y. (solid curve in
fig. 5).

These time estimates constitute a minimum. The time required in-
creases if one takes into account that the stream incision adds to the
magnitude of the mean denudation rate d, so that d >05 d,. If d, in

un =

= 0.758 d,
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accord with figure 4B, represents the mean between vertical stream cutting
u = 0.758 d and summit lowering d, = 0.189 h/1,000,000 yrs, then

d =d"—’2"“—: 0.805 d, = 0.152 h/1,000,000 yrs.

The latter rate is only slightly larger than the mean denudation rate in-
dicated by the regression line of figure 3 (which, when converted to the
equivalent million-year rate, becomes 0.142 h), From it follows that u =
0.115 h/1,000,000 yrs, and that the net rate of relief reduction d; —u =
0.074 h/1,000,000 yrs, which means that it would take 30 m.y. to reduce
the relief to 10 percent of its initial value, and 60 m.y. to reduce it to 1
percent.

EFFECT OF TECTONIC UPLIFT

In contrast to isostatic compensation, which is a function of the
denudation rate, tectonic uplift is independent of the latter. Instead of
merely retarding the reduction of the relief, it can create relief and thus
indirectly influences the denudation rate.

Tectonic uplift rarely takes place at a constant rate over long periods
of time, and the rate is rarely uniform over large areas. Rather, it tends
to occur in discontinuous phases of varying intensity, depending upon the
cause, type, and magnitude of the crustal stresses that bring it about. To
avoid these spatially and temporally varying circumstances, it is necessary
to start a general consideration of the effect of tectonic uplift with certain
simplifying assumptions, namely, that (1) uplift is continuous and occurs
at a constant rate, (2) the streams cut down at the same rate u at which
the land is uplifted, (3) at the beginning of uplift, the mean basin relief h
is zero, and (4) summit denudation sets in as soon as there is relief.

Except for the independence of u from the denudation rate, the
quantitative relationships resemble those found for isostatic compensa-
tion. In either case, the rate of relief change per time unit depends on the
difference between uplift and summit denudation: h, — h, = u — d,,
where h, is the reliel at the beginning, h, the relief at the end of the
time unit. Initially, d, is smaller than u, so that the reliel increases. This
causes in turn a progressive increase of d,, until d; = u; from then on,
there is no further change of the relief h as long as the rate of uplift u
{and with it the identical rate of stream incision) remains constant. When
summits and stream beds are lowered at identical rates, one must expect
that intermediate surface points are lowered at the same rate also, so
that d, = u = d. Since d, = 0.0021 /1000 yrs, the mean denudation rate
d in this case is higher than the d = 0.0001535 h/1,000 yrs estimated by
the regression equation of figure 3. This makes sense because figure 3
presumably includes data from river basins that are not being uplifted.

Equality of d,, u, and d denotes Gilbert's (1877) state of “equality of
action”, which is identical with the “steady state” of Hack (1960); uplift
and downwearing are in dynamic equilibrium.
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The mean basin relief h, at which this steady state is reached can he

found from
d, = 0.189 h, /1,000,000 yrs = u/(1,000,000 yrs)

u
T 0.189
Since d, approaches u asymptoticaily, the two become truly equal only
in infinity. For practical purposes, one may set the beginning ol the
steady state at the point in timie when d, = 0.99 u. This happens, accord-
ing to

by =529u.

(1 — 0.189)"% = (1 — 0.99),
log 0.01

s = Tog 08I 22 M-

after the beginning of uplift, that is, after the same time span that was
required to reduce the mean relief of a drainage basin without any uplilt
to 1 percent of its initial value.

The steady state with constant relief can be reached only if u remains
constant for at Ieast 22 m.y. and if there is no change in the quantitative
relationship d, = [ (h) during that time. Such stringent conditions are
not likely to exist in nature. Uplift rates generally vary within much
shorter time spans. Climatic changes that affect the seasonal distribution
of rainfall and runoff and thus the relationship d, = [ (h) occur also
more frequently, as the repeated shifts of climatic zones during the
Pleistocene indicate. Finally, the successive exposure of rocks of varying
resistance may also vary the rate of summit denudation.

Nevertheless, these changes are often cyclic. If geologically short
periods of increasing rate of uplift alternate with periods of decreasing
uplift and periods of tectonic rest, the relief will oscillate around the
postulated steady state value. The amplitude of these oscillations de-
pends upon the amplitude of the fluctuations in the rate of uplift and
upon the lengths of the periods of increasing uplift, decreasing uplift,
and rest. Similar oscillations can be expected if alternating climatic
changes vary the relationship d, = f (h), or if alternating layers of weak
and resistant rocks become successively exposed as the land surface is
worn down.

Even if a steacly state relief is never obtained, as, for example, in cases
of progressively increasing and then abruptly ending uplift, the relation-
ships between relief and uplife (h = { (u)} and between denudation and
reliel {d;, — f (hy act as a causal linkage between uplift and denuda-
tion, via relief, so that there always exists a tendency toward establishing
a dynamic equilibrium between the rate at which the land is raised by
crustal movement and the rate at which it is worn down, with the latter
striving to match the [ormer. The adjustment of denudation to uplift
requires time, and this time Iag differs for the several denudational proc-
esses involved (Ahnert, 1954, 1967). First to reach equilibrium are the
trunk streams in the margins of the uplifted area. By headward erosion,
the adjustment is transmitred upstream and into their tributaries. Frosion

-,
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of the streams steepens the lower parts of the valley side slopes and thus
accelerates the transport of rock waste from the slopes to the streams. The
steepening of the valley sides, and with it the acceleration of waste move-
ment, extends progressively farther upslope until it reaches the inter-
fluves and summits. Faster removal of waste means that the waste cover
becomes thinner, and that the bedrock underneath, now less protected
from atmospheric influences, weathers more rapidly. Eventually the rate
of waste production by weathering equals the new higher rate of waste
removal, and summits, slopes, and stream beds are being lowered at the
same rate at which the land is uplifted. The total lag time from the
beginning of the uplift to the eventual adjustment of the rate of summit
lowering is likely to be longer for large uplifted areas, with large drain-
age basins, than for small ones, because of the time needed to transmit
the adjustment of stream courses throughout the area. This fact has been
deliberately neglected in the preceding discussion by the assumption that
the rate of stream incision immediately equals the rate of uplift along
the entire stream course. The time t, = 22 m.y. represents therefore only
the minimum needed to reach the steady state. Once the streams are ad-
justed, however, the additional adjustment of denudation and weather-
ing on slopes and summits is a local process independent of the size of
the uplifted area.
SOME PRACTICAL APPLICATIONS

The relationships between uplift, relief, and denudation discussed
in the preceding section may be used as a means of order-of-magnitude
estimates of the processes involved, over time spans that are too long to
permit direct observation or simple extrapolation from present condit-
ions. For example, the rates of intensive uplift cited by Gilluly (1949}, in
the vicinity of 10 m/1000 yrs, can occur only for a short time in any one
area. If they were constant over greater lengths of geological time, they
would produce a steady state relief h, in the absurd order of 53,000 m, con-
siderably more than the average thickness of the entire crust. Similarly,
the even higher rates of glacio-isostatic uplift in the central areas of
Pleistocene ice sheets are bound to be of short duration; in fact, near the
periphery of these former continental glaciers the glacio-isostatic uplift
has already been completed.

For slower, long-continuing uplift, the Colorado Plateau may offer
a suitable example. During the Eocene, the area of the plateau became
covered with thick sediments that were being deposited at very low eleva-
tions. Deposition ceased at the end of the Eocene, and degradation began
to set in. Since then, an estimated 3000 m of sediments have been re-
moved; some remnants of the Eocene cover stand now as mountains (for
example, Chuska Mtns.) above the general level of the plateau (see Thorn-
bury, 1965, p. 436). On the other hand, the Colorado River has cut its
bed deeply into the present plateau surface, by as much as 2000 m (lower
Grand Canyon). The total uplift in the 40 m.y. that have elapsed since
the end of the Eocene thus probably exceeds 5000 m, and the average
rate of uplift 125 m /1,000,000 yrs.
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'}‘E;ﬁ existence on the Colorado Plateau today. Figure 6 illustrates the relief
L development with the assumption that the rate of uplift has remained E
ymaain constant and that the rate of vertical erosion by the streams is equal to 5
F the rate of uplift. Under these conditions, the Colorado River would E
i have begun erosion of the present Grand Canyon some 16 m.y. ago, dur- 7 200
: ing the late Miocene.
Figure 7 attempts to show the effects of variable uplift. The uplift

(and stream incision) rate changes cyclically between 25 m/m.y. and 225
m/m.y. Each uplift cycle lasts 8 m.y. Total cumulative uplift over 40 m.y.
is still 5000 m, as in figure 6. The reliel development contains five cyclic
oscillations, in response to the five cycles of uplift, and the rate of summit 4
denudation oscillates in five cycles in response to the variations of relief.
Relief increases as long as d, is smaller than u and decreases during the
times in which d, is larger than u. Consequently, the occurrence of relief
maxima and minima jags behind the occurrence of maxima and minima
in the rate of uplift: a reliel maximum occurs when the summit denuda-

tion curve crosses a descending segment of the uplilt curve, and a reliel L
minimum occurs when the summit denudation curve crosses an ascend-

ing segment of the uplilt curve. For purposes of comparison, the relief
development curve of figure 6 (constant rate of uplift) has been super- Fig. 7. Relationship et
imposed on the relief development curve of figure 7 as a dashed line. velopment (schematic).
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After 22 m.y. (the onset of the steady state in fig. 6), the relief oscillations
retain a constant amplitude and elevation range, with maxima of 775. m
and minima of 546 m, varying around a mean of 661 m which is identical
with the steady state relief of figure 6. Correspondingly, the rate of sum-
mit denudation oscillates between 103 m/m.y. and 147 m/m.y. around
a mean of 125 m/m.y., which is equal to the steady-state d, of figure 6
and also equal to the mean rate of uplift in figure 7. Corlltinuation of the
cyc]ic variations of the rate of uplift with the same amplitude, frequency,
and mean rate would cause continuation of the relief development cycles
and denudation rate cycles within the same parameters as above. This
exemplifies a steady rate of relief oscillation to be distinguished from the
steady state of constant relief shown in figure 6. ) )
Another possible application of the quantitative relationship be-
tween relief and denudation is an order-of-magnitude estimate of the
probable rate of present stream incision, and thus possibly ol present
uplift, in each of the twenty river basins of figure 3. Such an estimate 1s
based on the following premises: (1) The rate of stream incision eclu.als
the rate of uplift. (2) Mean denudation rates without stream 1ncision
have been estimated earlier to obey the function d = 0.000106 h/1000
yrs: positive deviations of observed denudation rates from this function
are assumed to be due to stream incision. (8) The summit denudation
rate is dy = 0.00021 h/1000 yrs. (4) The observed mean denudation rate
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d (as listed in table 1) represents the mean between the rate of summit
denudation d, and the rate of stream incision (= rate of uplift) u, that
is,
q = d; } u ,

2

so that
u = 2d —d, = 2d — 0.00021 h /1000 yrs

provides an estimate for the rate of uplift.

Needless to say, these premises are highly debatable. However, they
have all been used profitably earlier in this paper, and only their present
juxtaposition is partially new. Despite the misgivings that every one of
them may evoke, they can be accepted with the understanding that the
purpose of following this procedure is to explore its suitability for obtain-
ing a crude idea of the probable rate of uplift.

TABLE 2
Mean Estimated rate Estimated
denudation of summit rate of
rate d denudation uplift u

River basin (mm /1000 yrs) d,(mm/1000 yrs) (mm/1000 yrs)

Flint River above Monrtezuma, Ga. 28 19 3
Colorado River above San Saba, Tex. 16 21 11
River Thames above London, England 16 33 — 1
Delaware River above Trenton, N.J. 42 63 21
Canadian River above Amarillo, Tex. 52 74 30
Little Colorado River

above Woodruff, Ariz. 31 B2 — 20
Juniata River above Newport, Pa. 41 103 — 2]
Grecn River above Green River, Utah 82 135 29
Escalante River, Utah 135 177 93
Dirty Devil River, Urah 177 204 150
Bighorn River above Thermopolis, Wyo. 109 211 7
Colorado River above Cisco, Utah 124 218 30
Wind River above Dubois, Wyo. 115 229 1
Animas River above Farminglon, N.M. 195 267 123
Sarine, Switzerland 210 293 127
Rhine above Lake Constance,

Switzerland 321 418 294
Isére above Grenoble, France 287 429 145
Reuss above Lake Lucerne, Switzerland 300 486 114
Kandcr, Switzerland 430 509 351
Rhone above Lake Gencva, Switzerland 418 602 234

Table 2 lists the resulting values of u. They fall cearly into two
groups: for eleven basins u varies between 37 and — 21 mm/1000 yrs,
and for the nine others it lies above 93 mm/1000 yrs. The first group
comprises very heterogeneous climatic and structural environments; any
conclusion regarding the differences between their respective estimated
values of u would be extremely hazardous. Probably most of them under-
go little or no uplift at present, or else the effect of any uplift upon their
mean denudation rates remains inconclusive. Three of the nine basins
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of the second group lie on the Colorade Plateau (Escalante River, Dirty
Devil River, and Animas River), the other six lie in the Alps. Perhaps by
accident, the average u of those three Golorado Plateau basins (122 mm/
1000 vrs} coincides almost exactly with the mean long-term uplift rate
of 125 mm /1000 yrs that has been estimated for that region above. Only
the Little Colorado River basin, the fourth basin on the plateau, casts
a shadow over this relationship; however, its negative u may be due to
local peculiarities. The six Alpine basins yield the highest average value
of estimated uplift, namely, 199 mm/1000 yrs or 199 m/m.y, This figure
also fits reasonably well within the rates of uplift that can be deduced
from the elevations of erosion surface remnants and former valley floors
in the Alps. According to Solch (1935), erosion surfaces dated as late
Miocene occur at elevations above 2000 m, late Pliocene surfaces above
1400 m, and preglacial (Plio-Pleistocene) valley floors around 1100 m,
in the northern Alps near the Swiss-Austrian border (including the Alpine
part of the Rhine basin). The present major valleys lie generally at about
700 m. Total valley deepening between the upper Miocene and the be-
ginning of the Pleistocene would thus have amounted to more than 900
m in about 12 m.y., or 70 to 80 m/m.y. During the Pleistocene the valleys
would have been deepened another 400 m in only I m.y. This highest
rate is probably in part due to the work of the Pleistocene glaciers. Not
only does the average value of u = 199 m/m.y. lie between the lower
limit of the pre-Pleistocene rate and the upper limit of the Pleistocene,
but also the individual values of u for the six Alpine drainage basins all
lie between those two limits.

"The results suggest that the admittedly very crude and very specula-
tive method of estimating rates of stream incision, and indirectly of
uplift, from measurements of relief and of denudation rates has some
merit. Since the function d = 0.000106 L/1000 yrs (mean denudation rate
without stream incision) has a lesser slope than the regression line of
figure 3, the majority of the u-values in table 2 were bound to be positive
and to increase generally with increasing relief: that in itself, then proves
nothing. However, the order-of-magnitude agreement between the values
of u and uplift rates estimated by other means in the case of the Colorado
Plateau basins and of the Alpine basins is not an inherent consequence
of the structure of the estimating procedure and therefore must be
ascribed either to some degree of validity of the latter or—which seems
less likely—to pure accident.

SUMMARY AND CONCLUSIONS

The preceding study has shown that the rate of denudation is mainly
influenced by the available relief, and that it tends to increase linearly in
proportion to the latter when removal of rock waste in solution is taken
into account along with the removal of solid particles. Differences of
mean annual precipitation seem to have no significant influence upon
the total denudation rate, although they affect the ratio between removal
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in solution and removal of particles. Probably the seasonal distribution
ol precipitation is more important than the annual amount.

The correlation between relief and denudation rates permits order-
of-magnitude estimates of several parameters of relief development, pro-
vided that certain generalizing assumptions are accepted. According to
these estimates 22 m.y. are needed without any crustal movment, and at
least 37 m.y. with isostatic compensation, to reduce the relief of an area
to I percent of its initial value in climates without pronounced seasonality
of rainfall. The long time required casts doubt on the possibility of
peneplanation under these circumstances. Most known peneplains and
inferred peneplain remnants date from the Tertiary, a period of frequent
crustal movements over most of the Earth, Intervals of tectonic rest can
hardly have been long enough to facilitate peneplanation by the same
set of denudational processes active at present in the middle latitudes.
Biidel's (1957) explanation of these erosion surfaces as products of more
rapid areally effective wash processes under a warm-subhumid climate
with seasonal concentration of rainfall offers a plausible alternative;
combined with deep chemical weathering, these wash processes require
less time to flatten the surface and can reduce the local relief even in the
presence of regional uplift,

Time also plays a critical role in the question whether development
of a steady state reliel (Hack, 1960) is possible. It seems that the rate of
uplift has to remain constant for several tens of millions of years before,
under mid-latitude conditions, the denudation rate of the summits equals
it. This makes attainment of a constant steady state relief very improbable.
Periodic increases and decreases in the rate of long-term uplift and a
resulting steady state of relief oscillation appear somewhat more likely.
However, most uplifts probably are so discontinuous and so variable in
magnitude that there is merely a tendency toward establishment of a
steady state, that is, of a dynamic equilibrium between uplift and down-
wearing. This tendency rests directly on the functional relationship be-
tween relief and denudation and places an effective limit on the height
of mountain ranges; no matter how intensive and long-lasting the uplift,
it will eventually be equalled or surpassed by the rate at which the sum-
mits are worn down.
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