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Abstract 

Field measurements from 23 sites in California and from five other widely 
distributed locations on soil-mantled hillslopes reveal a strong inverse relation 
between maximum drainage area of unchannelized basins and their average 
hollow gradients. The area-slope product was found to equal about 4000 m2. 
Hollow length was also negatively correlated to average hollow gradient. 
These observations indicate that the number of sources and, consequently, 
drainage density increase with slope. The conservation of mass equation for 
a tipped triangular trough and a slope-dependent transport law are used to 
develop an expression for the rate of colluvium accumulation in hollows. 
Maximum colluvium depth is found to increase by the one-half power of time 
owing to the vertically increasing cross-sectional area of the trough. Rate of 
accumulation is proportional to side-slope gradient and to the difference 
between the side-slope and hollow gradient. The ratio of hollow to side-slope 
gradient is typically about 0.8. Models of shallow subsurface flow and deeper 
ground water flow are used to predict, via the Mohr-Coulomb failure 
criterion, the relation of hollow length to its gradient. It is not yet known 
which flow path plays the dominant role in controlling the position of the 
channel head, but both models predict that angle of internal friction <j>' of the 
colluvium or weathered bedrock strongly influences the size and slope of the 
unchannelized basins and that basin size must rapidly decline above a gradient 
of 0.7 tan <j>'. 

Introduction 

As a consequence of the seminal work by Hack and Goodlett (1960) and the 
numerous field studies that their study stimulated, it is now becoming widely 
recognized that small unchannelized valleys (Fig. 17.1) dominate the drainage 



Figure 17.1 View of unchannelized basins on hiUslopes in Marin County, California. 
Note tributaries or subhoUows within larger unchannelized basins. 
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area of most soil-mantled hillslopes and greatly influence runoff and sediment 
transport processes. The valleys focus shallow subsurface storm flow or 
throughflow, which may produce high pore pressures and saturation overland 
flow, in the downslope ends of the valleys. The spoon-shaped surface 
topography also forces the convergence of soil material transported downslope 
by creep and biogenic transport processes, and consequently the valleys tend 
to develop a thick mantle of colluvium (e.g., Hack and Goodlett, 1960; 
Pierson, 1977; Dietrich and Dunne, 1978; Marron, 1982; Lehre, 1982; 
Woodruff, 1971; Reneau et al., 1984). Landslides most commonly occur in 
these topographic convergent zones (e.g. Pierson, 1977; Tsukamoto et al., 
1982; Shimokawa, 1984; Dietrich and Dunne, 1978; Woodruff, 1971; Hack 
and Goodlett, 1960; Lehre, 1982; Iida and Okunishi, 1983) and the thick 
deposits tend to produce large rapid debris flows that scour to bedrock the 
first- and second-order channels that lie downslope (Pierson, 1977; Dietrich 
and Dunne, 1978; Swanston and Swanson, 1976). Debris flows from thick 
colluvium in unchannelized valleys have caused considerable destruction of 
property and loss of life (Brown, 1984; Reneau et al., 1984; Woodruff, 1971; 
Tsukamoto et al., 1982) and play a major role as sediment sources in 
catchment-level sediment budgets (Dietrich and Dunne, 1978; Lehre, 1982; 
Swanson et al., 1982; Pierson, 1977). 

A qualitative model is fairly well established for how the unchannelized 
valleys work. In essence, the valleys are sites that experience infrequent, but 
recurrent rapid evacuation of colluvium, primarily by landsliding, followed by 
periods of slow colluvium accumulation (Hack and Goodlett, 1960; Woodruff, 
1971; Pierson, 1977; Calver, 1978; Dietrich and Dunne, 1978; Kirkby, 1978; 
Humphrey, 1982; Lehre, 1982; Shimokawa, 1984). The convergent subsurface 
flow in the spoon-shaped bedrock geometry leads to highest pore pressures in 
the lower portion of the valley. These pore pressures may be further enhanced 
by the discharge of deeper ground water in the hollow. Under a certain 
combination of colluvium strength and antecedent moisture conditions, storm 
precipitation can produce failure in the colluvium. Weathering and soil 
development may produce permeability and strength boundaries such that 
failures occur within the colluvium (Reneau et al., 1984; Tsukamoto and 
Kusakobe, 1984). The landslide may only partially evacuate the colluvial 
mantle, after which sheetwash and gullying may continue to erode the exposed 
slide scar. In some cases, gullying may be the primary cause of colluvium 
removal. Revegetation on the scar contributes significantly to reestablishing 
accumulation in the hollow (Lehre, 1982; Shimokawa, 1984). 

The frequency of flushing events in hollows is not yet well documented. 
Shimokawa (1984) used dendrochronology and soil thickness measurements 
on landslide scars of various ages in steep, forested hillslopes of Japan to 
estimate recurrence interval of landsliding in hollows and adjacent slopes. As 
Iida and Okunishi (1983) have also proposed, Shimokawa suggested that 
recurrence of landsliding is largely controlled by the rate of "top-soil" 
accumulation because landsliding is thought to be very likely once the soil 
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reaches a critical depth. Estimated recurrence for landslides at a site varied 
with bedrock type and slope gradient from 12 to 30 years on 50-70° slopes 
developed on ash and pumice to about 1000 years on 20-40° slopes developed 
on granite. In the Pacific Northwest of the U.S.A., dendrochronology has 
been useful in giving estimates of the rate of deposition in hollows in the early 
phase of post-landslide accumulation (Dietrich and Dunne, 1978), but it 
appears that for the vast majority of sites the recurrence of major flushing is 
much greater than can be ascertained from this method. Palynology (Dietrich 
and Dorn, 1984) and radiocarbon dating of thick colluvial deposits in hollows 
in the California Coast Ranges and Tehachapi Mountains (Marron, 1982; 
Reneau et al., 1984 and in preparation) suggest that the frequency of erosion 
of colluvium to the bedrock surface is of the order of 10000 years. Six of nine 
sites dated, however, yield basal ages between 11000 and 14500 B.P. (Reneau 
et al., in preparation), and it may be that these hollows record a period of 
more frequent, intense storms. Much work is still needed to sort out the 
significance of climatic fluctuations. We see both landsliding and net 
accumulation under current climatic conditions, hence climatic change is not 
required to induce either net accumulation or erosion in individual hollows. 
A similar conclusion was reached by Hack and Goodlett (1960) for hollows in 
the Appalachian Mountains, and by Gray and Gardner (1977) for colluvial 
deposits on hillslopes of the Appalachian Plateau. 

There is now a need to develop quantitative, physically based models for the 
hydrology, sediment transport, weathering, and instability of the colluvium 
and link these models to predict the geometry of unchannelized basins. Some 
valuable first steps have been taken in modeling subsurface flow in small 
unchannelized bedrock valleys using finite-element methods (Humphrey, 1982) 
and contributing-area concepts (Humphrey, 1982; Iida, 1984; Kirkby, 1978). 
Iida and Okunishi (1983) treated the stability problem as being entirely 
dependent on the depth of colluvium, and modeled the lowering rate of the 
bedrock surface as a function of the rate of colluvium accumulation and 
bedrock weathering, which in turn control the recurrence interval of 
landsliding. 

In this chapter, we focus on the end-member problem of what controls the 
size and shape of the largest unchannelized basins on hillslopes—that is, those 
basins large enough to support channelized flow at their downslope ends. In 
essence we ask: How much drainage area in a basin does it take to initiate a 
channel? We first present field data on area, length, and slope relationships of 
such basins and then analyze the shape of the basins and the accumulation of 
colluvium in the hollow. Finally, through the use of simple flow models and 
slope stability calculations we propose a quantitative explanation for the 
observed field relationships. 

Basin geometry 

Other than the qualitative impression that the colluvium-mantled bedrock 
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valleys appear to be typically spoon-shaped with concave contours and 
concave-up downslope axes, little is known about the geometry of these 
features. To describe the large-scale, three-dimensional properties of slopes, 
Hack and Goodlett (1960) introduced the now widely used terminology of nose 
for convex contours, side slope for straight contours, and hollow for concave 
contours. Typically all three elements make up the basin upslope of the head 
of the channel. Marcus (1980) proposed a morphologic classification of first-
order basins based in part on the planform shape of the unchannelized valley 
in the first-order basins. Tsukamoto et al. (1982) computed the areal propor­
tions of convergent, divergent, or planar slopes in Japanese catchments. On 
average, convergent slopes make up 60 percent of the entire basin area. 
Tsukamoto et al. propose calling convergent slope areas zero-order basins and 
state that these are sites of ephemeral streams during heavy storms. 

Four measures of unchannelized basin geometry that are fairly simple to 
obtain and appear to be quite useful are (1) the drainage area of the basin 
upslope of the channelway, (2) the maximum horizontal length of the axis of 
the basin, (3) the hollow and side-slope gradients, and (4) the basin amplitude 
(Fig. 17.2). The first three measures involve careful field inspection to locate 
the farthest downslope extent of the unchannelized, colluvial portion of the 
hollow (axial region of the basin). The average hollow gradient, which will be 
used in the analysis to follow, is computed as the elevation difference between 
ridge crest and channel head divided by the horizontal distance. In general, 
the hollows that are direct upslope extensions of the first-order channels rather 
than tributaries to them will be the largest unchannelized basins. After 

Figure 17.2 Illustration of the geometric properties of unchannelized basins. L and 0 
are the horizontal length and average gradient of the hollow, respectively. Basin 
amplitude is the distance from the bedrock to the horizontal line between the noses 
along a line normal to the bedrock surface in the hollow axis. The broken line encloses 
the depositional zone in the hollow. 
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erosional events, the channel head may temporarily extend well up the hollow, 
as described by Hack and Goodlett (1960) and many other subsequent authors; 
hence for the purpose of denning the maximum unchannelized basin 
geometry, the hollows without significant evidence of recent flushing should 
be used. Alternatively, basins can be randomly sampled without regard to 
recent flushing and trends in geometry can be established using the largest 
unchannelized basins encountered. The fourth measure, basin amplitude, 
quantifies how deeply the hollow is incised relative to adjacent interfluves. 
Amplitude can be computed from a detailed topographic map and infor­
mation on thickness of the coUuvium in the hollow. A straight line can be 
drawn across the basin connecting points of equal elevation on adjacent 
drainage divides on the noses. The maximum difference in elevation along this 
line between the nose and the bedrock surface of the hollow multiplied by the 
cosine of the interfiuve slope is a measure of basin amplitude. The thickness 
of the coUuvium in the hollow can be determined by drilling, by examining 
exposure in landslide scars, by using geophysical methods, such as seismic 
refraction, or by employing some combination of these techniques. As 
amplitude will vary along the basin, for purposes of comparison, maximum 
amplitude is used. 

Observations 
Results of field surveys in northern California and comparison with sites 
elsewhere raise several intriguing questions regarding basin geometry and 
controls on channel inception. Basins in the rounded, soil-mantled hillslopes 
just north of San Francisco in Marin County were selected to obtain a broad 
range in hollow gradient. Sites are underlain by chert, greenstone, and sand­
stone of the Franciscan assemblage and have a cover of dense grass, coastal 
scrub vegetation or mixed hardwood (oak, laurel, madrone) forest. Mean 
annual precipitation is about 600-900 mm. Debris flows from colluvium-
mantled hollows are common in this area, and many sites could not be used 
because of recent landsliding. Basins were selected to sample the range of 
hollow gradients, and surveying was accomplished either with a hand-level and 
tape or with a theodolite. Often 1:24000-scale topographic maps were used 
to define drainage area. 

Slope profiles of the ground surface of hollows in Marin County and at 
other locations show considerable variation. Except for a short convex ridge, 
many are nearly straight or concave throughout, whereas others only become 
either noticeably convex or concave as the channel head is approached. Often 
there is an abrupt change in slope from the hollow to the channelway, and it 
is likely that near the channel head a large increase in bedrock slope leads 
to a convex profile in the colluvial fill, whereas a strong decrease in bedrock 
slope results in a concave colluvial slope profile. A large change in slope from 
hollow to channelway probably significantly affects the groundwater flow and 
consequent pore pressures develop in the downstream end of the colluvial 
deposit. For three cases where a strong steepening of slope was observed, the 
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hollow and local channelway slopes were averaged and data were noted 
separately (Fig. 17.3). It is not yet clear whether this averaging procedure is 
the best representation of field relationships. In two gentle profiles with 
gradients less than 10°, discontinuous gullies were present 50—70 m upslope 
from the continuous channel head, and in one case, winter storm flow 
discharged from a large pipe in the upper part of the discontinuous gully. 
Regardless of surface slope, the longitudinal profile of the underlying bedrock 
surface in hollows appears generally to be concave-up (Reneau et al., 1984; 
Dietrich and Dorn, 1984; Pierson, 1977; Iida and Okunishi, 1983). 

Drainage area of surveyed unchannelized basins in Marin County increases 
in proportion to the 1.2 power of the total hollow length (Fig. 17.3A). This 
low rate of increase in area with hollow length implies that small and large 
basins differ more in their length than in their width. As Hack and Goodlet 
(1960) originally noted, however, area increases quite rapidly with distance 
down the hollow within individual basins. 

Data from field sites in Marin County reveal an inverse relationship between 
drainage area upslope of the channel head and average hollow gradient (Fig. 
17.3B). The most accurate field data give area proportional to the -1 .04 
power of hollow gradient. Area is proportional to the - 0.99 power of hollow 
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Figure 17.3 Drainage area upslope of channel head in small catchments as a function 
of (A) horizontal length of hollow and (B) hollow gradient for hillslopes in Marin 
County, immediately north of San Francisco, California. Open circles represent sites 
in which slope strongly steepened downstream of the channel head and the average of 
upslope and downslope gradients on either side of the channel head was used 
(unpublished data from K. Whipple and P. Templet, University of California, 
Berkeley, 1984). The crosses represent forested sites where landslide scars are common 
and make it more difficult to define precisely the channel head. Error bars denote range 
of uncertainty. The full line in (A) represents the least-squares regression equation 
A = 22.9 L121, r = 0.79, n = 20. 
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gradient for the entire 20-point data set. Hence the area-slope product is 
essentially a constant and for the nine data points represented by full circles 
in Figure 17.3B the constant is 4043 m2 . If all available data for Marin County 
are used in conjunction with eight other data points from gravelly soils in 
northern California, Oregon, Virginia, and Japan to define the area-slope 
correlation, essentially the same result is obtained (Fig. 17.4). In this case, area 
decreases in proportion to the - 1.05 power of hollow gradient and the area— 
slope product equals 4121 m2 . There are, of course, many smaller unchan-
nelized basins that intersect as tributaries to channels or other hollows (Fig. 
17.1) before they capture sufficient drainage area to produce a channel. Strong 
geologic controls may force ground water toward the surface, which can 
generate sufficient pore pressure and consequent instability to initiate and 
maintain a channel in basins smaller or less steep than expected from Figure 
17.4. With more data, it may be possible to detect differences due to geology, 
climate, or vegetation. This small sample suggests, however, that in general the 
area-slope product necessary to maintain a channel head at the end of an 
unchannelized basin in well-vegetated, coarse-textured colluvium on a soil-
mantled hillslope is a constant and equals about 4000 m2 . 

Data from the sites used in Figure 17.4 also show a strong decrease in total 
hollow length with increasing gradient (Fig. 17.5). For all 28 data points, 
length decreased proportionally to the - 0.67 power of slope. For example, a 
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Figure 17.4 Relationship between drainage area and hollow gradient for basins 
upslope of channel heads in Marin County, California ( • ) , Clear Lake, California (+ , 
Dietrich and Dorn, 1984), coastal northern California ( x , W. Trush, University of 
California, Berkeley, unpublished data, 1984), Virginia (O, without bar, Hack and 
Goodlett, 1960; O, with bar, W. Dietrich, unpublished data, 1984), Japan ( V , 
Tanaka, 1982), and central coastal Oregon ( A , Pierson, 1977, personal communi­
cation, 1984). The full line represents the regression equation A = S~105, r = -0.885, 
/* = 28. 
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Figure 17.5 Relationship of hollow length to average gradient for unchannelized 
basins. Symbols are the same as in Figure 17.4. The regression equation is 
L = 87.7S-0-67, r = - 0.823, n = 28. 

hollow with a 10° slope should be about 281 m long, whereas a steeper, 30° 
hollow should be only about 127 m long. Because the hollow gradient equals 
the total elevation drop from ridge to channel head divided by horizontal 
length of the basin, the regression equation indicates that hollow length 
decreases as the -2.0 power of elevation drop. 

The length-slope observation has important implications for drainage 
density. The area required to initiate a channel head is also the area necessary 
to produce a source for an exterior link. Hence, the maximum number of 
sources in a basin equals the basin drainage area divided by the observed area 
required to initiate a channel. Clearly, the actual number of sources will be 
much less because most of a drainage basin drains to the sides rather than to 
the heads of channels. Nonetheless, the inverse relationship between area and 
slope shown in Fig. 17.4 would suggest that the number of sources in a basin 
is directly correlated with slope. Intuitively, one would expect that the greater 
the number of sources in a drainage basin, the greater the drainage density. 
This intuition is confirmed if certain simple assumptions are made (R. Shreve, 
personal communication, 1985). If we assume that in a large drainage basin 
the number of exterior links, which is the same as the number of sources, is 
equal to the number of interior links, and we denote the number of sources 
per unit area by N, then the drainage density D is 

D = 
M L 

2Nah 
(1) 

for a given mean link length /I and link area <zL. Because aL = 1/(2N) and 
H = KaL (see discussion in Abrahams (1984)), where K is a constant, the 
drainage density can also be expressed as 

D = (2KN) 0.5 (2) 
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Thus our empirical area-slope relationship implies that steeper basins of a 
given drainage area with more sources, have higher drainage density than 
gentler basins of the same area with fewer sources. These preliminary data 
support the inference by Dunne (1980) that in regions where subsurface flow, 
and consequent piping and landsliding, play a major role in landscape 
evolution, drainage density is higher on steeper slopes. 

Limited data (four sites) from northern California on basin amplitude 
suggest that the amplitude divided by the half-width of the basins is roughly 
equal to the hollow gradient. For example, a 100-m wide basin on a 9° slope 
would have 8 m elevation difference between the interfluve and the hollow, 
whereas a 60-m wide basin on a 27° slope would have 15 m elevation 
difference. Although unchannelized basins tend to be narrower on steeper 
slopes, the steeper gradient of the hollow results in greater hollow amplitude. 

Because the gradients down the interfluves, down the hollow, and from the 
interfluve to the hollow are similar, it is reasonable to suggest that the 
gradients are controlled by the same mass-wasting processes. We cannot as yet 
predict these gradients. 

Sediment transport 

On well-vegetated, soil-mantled hillslopes, soil is transferred downslope by the 
mass movement processes of landslides, creep, and biogenic transport. Land-
sliding is rare on noses or side slopes to hollows. On hillslopes where soil 
properties and biologic activity are relatively uniform, rates of creep and 
biogenic transport are probably primarily dependent on slope gradient. Hence, 
in unchannelized basins, the focusing of colluvium toward the hollow, which 
is generally less steep than the side slopes, results in net deposition and a 
thickening of colluvium over time. 

Landslide processes involving the colluvial deposits in the hollow appear to 
vary with texture. Instability in clay-rich colluvium tends to produce slow-
moving earthflows (e.g., Keefer and Johnson, 1984): in a single season total 
displacement of the center of mass of the colluvial fill may be only a few meters 
or tens of meters. Movement is periodic and the intervals of inactivity can be 
sufficiently long that the landslide morphology (such as the crown scarp and 
the lobate snout) may be indistinct. In contrast, landslides in coarse-textured 
colluvium in hollows, which are the focus of this paper, typically initiate as 
a slide but quickly liquefy, producing a rapidly flowing debris flow (e.g., 
Pierson, 1977). Liquefaction of colluvium may be caused by the sudden slide-
induced increased shear that affects an undrained loading condition. Recent 
work by Kramer (1985) has demonstrated that loose fine sand will liquefy when 
subjected to undrained shear, and he has suggested that coarser debris will act 
similarly. Typically only a portion of the accumulated colluvium in the hollow 
is discharged with the debris flow. Subsequent gullying and slumping may 
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erode a large portion of the remaining colluvium before net accumulation is 
initiated. 

In the following discussion, we examine two simple models for colluvium 
accumulation in hollows. There are several reasons to build such models. At 
least in the early phases of deposition in a hollow after a flushing event, 
increasing colluvium thickness should lead to less stable deposits because of 
the progressively reduced effectiveness of the apparent cohesion provided by 
roots (Dietrich and Dunne, 1978). Hence, an important linkage may exist 
between rate of infilling and frequency of instability (see also Pierson, 1977, 
p. 133). As mentioned above, Iida and Okunishi (1983) proposed a deter­
ministic model that predicts failure of colluvium once it reaches a critical 
thickness. The colluvium was assumed to be saturated, and they stated that 
intense saturation-producing storms in Japan are sufficiently frequent for this 
to be a reasonable assumption. On the steep slopes of the coastal mountains 
in the western United States, however, colluvium in many areas has reached 
thicknesses much greater than that which can be easily saturated, perhaps due 
to an extended period in the Holocene with a low frequency of intense 
rainstorms (Reneau et al., in preparation). Colluvium thickness in hollows 
ranges from less than 1 m to over 10 m, but typical maximum depth is 4-5 m 
(Reneau et al., 1984). If rates of deposition can be predicted, some of the 
observed variations may be explicable quantitatively in terms of basin 
geometry and time since flushing. Finally, develoment of a sediment transport 
model will provide, some insight into the form of the transport law (sensu 
Kirkby, 1971; Smith and Bretheron, 1972) controlling soil transport and the 
morphology of the nose and side slopes contributing to the hollow accumu­
lation. This sediment transport model should allow us to explore the 
adjustments in slope, soil thickness, and transport rates for different bedrock. 

A conical basin , 
The most convenient mathematical representation of an unchannelized basin 
is that of a slice of a cone (Fig. 17.6). As Carson and Kirkby (1972, p. 392) 
have shown, the mass balance equation for colluvium transport in a cylindrical 

Figure 17.6 Coordinate system for conical-shaped basins. 
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coordinate system (Fig. 17.6) in which the mass transport law is 

<?s = - a — (3) 
dx 

can be written as 

d2z a 3z _ dz 
JP~~rJx~ ~~di 

The first term in (4) is the diffusion component in which a is the transport 
coefficient, z is the elevation above an arbitrary datum, and x is the distance 
downslope from the ridge crest (Fig. 17.6). The second term arises from the 
convergence caused by contour concavity and increases as the distance from 
the basin outlet r decreases. The last term is the local elevation change of the 
colluvial surface with respect to time t. Equation (4) can be solved numerically 
for a variety of upslope and downslope boundary conditions. If profile 
concavity is small then the diffusion component is negligible and (4) yields 

h»-St (5) 
r 

where h is the thickness of the accumulated colluvium and S is the constant 
slope. Depth of colluvium increases downslope linearly with time. For a given 
amount of time since onset of deposition, thickness is proportional to slope. 
More complex results, involving significant contribution from the diffusion 
component, can be obtained if profile concavity is allowed and the effects of 
discharge at the end of the basin are permitted to propagate upslope and alter 
the surface slope. This seems unwarranted, however, because the basin 
geometry, although mathematically convenient, does not appear to represent 
natural basins. 

Inspection of unchannelized basins in the field or on sufficiently detailed 
topographic maps (1- to 2-m contour interval) confirms Hack and Goodlett's 
(1960) observation that such basins are best described as having convex con­
tours (nose) along a narrow drainage divide and straight contours (side slopes) 
between the nose and the hollow. The side-slope element, which is the trans­
portation surface of colluvium to the hollow, is not well represented by the 
coordinate system shown in Figure 17.6 and used in (4) and (5). This geometry 
also does not yield the pronounced 'LP or 'V shaped cross-sections typically 
revealed in road-cut exposures across hollows. Finally, unchannelized basins, 
although spoon-shaped, tend to be long relative to their widths and to have 
subparallel rather than strongly convergent interfluves. 

A trough-shaped basin 
We propose that a more realistic representation of an unchannelized basin is 
that of a tipped triangular trough. As illustrated in Figure 17.7A, sediment 
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Figure 17.7 (A) Diagram of an unchannelized basin represented as a tipped triangular 
trough. The horizontal plane ABC intersects the surfaces of the colluvium-mantled 
hollow and side slopes along contours AB and BC, respectively. Note that convergent 
transport, represented by arrows, leads to accumulation of thick deposits of colluvium. 
(B) Geometric relationships of hollow gradient 0 side-slope gradient a and the angle y 
formed between a line parallel to the side slope and perpendicular to the depositional 
zone in the hollow. 

transport from straight contour side slopes intersects the less steep hollow at 
an acute angle. The trough is composed of a source area of side slopes, where 
the soils are thin, and a depositional zone of thicker colluvium in the hollow. 
With increasing depth of colluvium, the cross-sectional area increases rapidly 
and produces a distinct ' V shaped deposit. Profile concavity of the trough 
axis is not considered in this geometric model, although the model can be 
modified to include this feature. The nose is reduced to a line, but this should 
have negligible effect on deposition of colluvium in the hollow. Perhaps more 
importantly, creep and biogenic transport processes will tend to make the 
slope transition from the side slope to the hollow less abrupt, probably leading 
to straight contours on accumulated colluvium along the hollow boundary. 
This effect will not be considered here, as it is viewed as nonessential to 
understanding the form of deposition over time. 
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To model the deposition of colluvium in the tipped trough we make several 
simplifying assumptions. (1) Typically the upslope ends of unchannelized 
basins are curved, and a more complete representation of the basin would be 
to include at the upslope end of the trough a short conical form similar to that 
depicted in Figure 17.6. We assume here that contribution of colluvium to the 
upslope end of the trough from the curved end is exactly balanced by the 
colluvium discharged at the downslope end of the basin. This implies that 
although some side-slope colluvium is discharged out of the basin, it is 
replaced with that from the upslope end of the basin. In this case, then, the 
change in volume with time of colluvium in the hollow equals the discharge 
of colluvium from the side slopes into the depositional zone. (2) As the deposit 
thickens in the hollow, the slope of the colluvial fill remains constant. (3) The 
downslope transport rate on the side slope qs is expressed by equation (3), 
rewritten here as 

qs = a tan a (6) 

where a is the angle of the side slope (Fig. 17.7B). 
Sediment from the side slope enters the depositional zone at an angle (Fig. 

17.7A). Inspection of Figure 17.7B reveals that the component of transport 
normal to the depositional zone qsn, is 

qsa = qs cos 7 (7) 

where 7 is the angle between the transport direction perpendicular to the side 
slope contours and the transport perpendicular to the depositional zone, which 
is assumed to lie parallel to the axis of the trough. Analysis of Figure 17.7B 
indicates that 

sin 7 = (///sin a) (///sin 0)"' (8) 

where / / i s the vertical height shown in Figure 17.7B and a and 0 are the slopes 
of the side slope and hollow, respectively. Substitution of (8) and (6) into (7) 
yields 

/ , s i n 2 0 \ ! l 
qSn - a tan a 1 - . 2 (9) 

\ sin a 

which can be simplifed to 

<7sn= a 
cos" 0 

cos a 

The total transport Qsn into the hollow of length / is then 

(10) 

gs„ = all cos v 
cos2 a 

1 (11) 
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Note than when the trough is horizontal, 0 = 0 and Qsn = 2al tan a, as 
required by the geometry of the basin. The conservation of mass equation for 
a depositional fill of volume V is 

n -dv 
Q s n ~ d 7 (12) 

The volume of the deposit at any time t is simply the cross-sectional area 
A times the length / of the deposit. The cross-sectional area is the half-width 
b times the maximum depth h of the fill measured perpendicularly to the 
bedrock axis in the hollow 

A = bh (13) 

Again, analysis of the geometric relationships expressed in Figure 17.7B yields 
the following 

b = /i[cos 0 (tan2 a - tan2 6)l/l] - 1 (14) 

where h is measured perpendicular to the bedrock axis of the hollow, which 
is inclined at slope 0. Combining (13) and (14) gives the equation for the 
volume of the fill with the width term eliminated 

V= h2[cos 0 (tan2 a - tan2 0)'2] " ' / (15) 

The mass balance equation (12) can now be written using (11) and (15) as 

all 

which gives 

cos1 6 1 Vi 

1 
cos a 

^- [h2 (cos 9 (tan2 a - t a n 2 B)VlYll] (16) 
at 

ffcos0(tan2a-tan20)/ cos20 
- 1 

cos a 
at = hah 

Performing the integration and using the boundary conditions that h = 0 at 
t = 0 leads to 

h = a 2 c o s 0 ( t a n z a - t a n ' ! 0 ) 2/nVi cos20 
- 1 

cos a 
(17) 

Inspection of available detailed topographic maps, including those reported by 
Hack (1965), indicates that the ratio of tan 6 to tan a is typically about 0.8. 
This ratio probably ranges from 0.5 to 1.0. Substitution of possible slope 
combinations in [(cos2 0/cos2 a) - 1] Vi shows that this term differs by less 
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than 20 percent from (tan2 a - tan2 6)'4; hence, for simplicity, (17) can be 
reduced to 

h = [ al cos 6 (tan2 a - tan2 0)t]l/z (18) 

and for Ss = tan a and Sh = tan 6, it becomes 

h = [ al cos 6» (Si - Si)t] Vl (19) 

Equation (19) shows that the depth increases in proportion to the 0.5 power 
of time after the onset of net deposition; hence the rate of increase in depth 
diminishes with time. This results from the increasing cross-sectional width 
with increasing depth in the triangular trough. In Figure 17.8, (19) is plotted 
for two ratios of hollow to side-slope gradient. For a given ratio, the maximum 
depth of colluvium at a given time is greater for steeper side slopes. Equation 
(19) also shows that the gradient difference between the hollow and side slope 
strongly influences accumulation rates. For example, the change in Sh/Ss from 
0.8 to 0.5 depicted in Figure 17.8 results in a 45 percent increase in depth of 
colluvium. 

For a given site, if the time since net deposition began can be determined 
then the coefficient a in the transport equation can be evaluated. Equation (19) 
can then be used to define quantitatively the thickness variations of colluvium 
with respect to time and slope. Reneau et al. (1984) report a radiocarbon date 
of 12900 B.P. from charcoal in basal colluvium in a small, grass-covered basin 
with a maximum thickness of approximately 450 cm. From a detailed 
topographic map, the gradients of the hollow and side slope (which includes 
the edge of the depositional zone) were found to be 17° and 21 °, respectively. 
Hence the ratio of the tangents of these two gradients is about 0.8. Equation 

i.o 

h 0.5 

(at) "* 

" 0 0.5 10 

S s 
Figure 17.8 Relationship of the dimensionless ratio soil thickness h divided by the 
square root of the product of transport coefficient a and time t to side-slope 
gradient Ss for two different ratios (0.5 and 0.8) of hollow to side-slope gradients in 
a tipped triangular trough. 
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(19) can be rewritten to solve for a and, using the above values, yields 
a = 152 cm3/cm yr. This value is relatively large as it is equivalent to the entire 
30 cm thick soil column on the side slope moving downslope at the speed of 
5 cm/yr. Biogenic transport caused by burrowing animals is quite apparent on 
the grass-covered hillslopes, but is probably not strong enough to cause this 
high transport rate (see discussion in Lehre (1982)). We have used a maximum 
value of colluvium depth rather than an average colluvium depth in the hollow 
axis of 400 cm, but this is a small correction. A large possible source of error 
in evaluating a is the assumption that the hollow was free of colluvium at 
12900 B.P. Reworking of colluvium not removed by a major erosional event 
should increase the apparent accumulation rates. 

The simple sediment transport model based on the tipped triangular trough 
provides a quantitative tool for understanding the accumulation of colluvium 
in hollows. Extensive radiocarbon dating through vertical sections in hollows 
will allow direct testing of the form of the transport equation and evaluation 
of the transport coefficient. Such dates for different basins will also allow us 
to test the findings that the basin geometry strongly influences deposition rates 
in the hollow. Our first crude test points to a need to examine carefully the 
exposures of colluvium in hollows in order to identify stratigraphic or 
pedologic evidence for partial evacuation of colluvium and subsequent 
reworking. It also demonstrates the need for direct measurement of colluvium 
transport rates on side slopes. 

Runoff and slope stability 

The slope length or catchment area required to initiate a channel head must 
be one that provides sufficiently frequent runoff and high pore pressures that 
colluvium cannot accumulate further downslope. The instability that leads to 
flushing of colluvium in the hollow and temporary extension of the channel 
head upslope is not necessarily the same as that required to maintain the 
channel head in its farthest downslope position. Flushing of the colluvium is 
infrequent, occurring at intervals of hundreds to thousands of years, whereas 
the channelway appears to be the site where channelized flow and at least some 
alluvial transport regularly occur. The transition from the hollow to the 
channelway varies between basins. In some cases the channel gradually 
develops over a 5-10 m length of valley floor, but more often the channel head 
is an abrupt, steep wall in colluvium more than a meter in height. In this latter 
case we have seen abundant subsurface flow issuing from the base of the wall. 

The specific mechanisms of channel-head maintenance are not yet well 
understood. In the California basins, the bed of the channel just downslope 
from the hollow is usually bedrock. Hence the channel is a seepage face 
draining the groundwater from the upslope unchannelized basin. As Dunne 
(1980) described, high seepage forces due to excessive pore pressures generated 
in the bedrock or colluvium may develop at channel heads and erode the 



colluvium. On very steep basins, partial or complete saturation of the 
colluvium without excessive pore pressures, can be sufficient to cause land­
slides. This can occur frequently enough to maintain a channel head 
(Humphrey, 1982). Because of the dense vegetation cover in the downslope 
ends of hollows it seems unlikely that saturation overland flow could provide 
sufficient boundary shear stress to initiate a channel. Transport by the 
channelized flow at the channel head, however, should play some role in 
channelway maintenance, particularly in fine-grained colluvium where shallow 
flow is capable of significant transport. The distance downslope to the channel 
head also should be influenced by climate and thus vary with climatic change, 
although it is not obvious what precipitation characteristic should be most 
important. 

In the following, we hypothesize that slope stability controls the location of 
the channel head and thereby directly or indirectly controls the size and 
geometry of the upslope unchannelized basin. We examine how shallow sub­
surface flow in the colluvial mantle, and excessive pore pressures generated 
from groundwater flow in the bedrock, may be responsible for the empirical 
relationships presented in the first part of this chapter. Throughout the 
following analysis we make the reasonable initial assumption that hollows 
have straight longitudinal profiles. 

Shallow subsurface flow 
If we represent the stability conditions leading to formation of a channel head 
with the infinite slope model of the Mohr-Coulomb failure law (e.g., Carson 
and Kirkby, 1972, p. 152), we can write for failure of colluvium of thickness 
z o n a bedrock surface inclined at slope 6 

psgz sin 0 cos 0 = c' + (j)sgz cos2 6 - pwgh cos2 0)tan </>' (20) 

where ps and pw are the bulk density of colluvium and water, respectively, g 
is the gravitational acceleration, c' is the effective cohesion, 4>' is the angle of 
internal friction, and h is the vertical height of saturated soil above the failure 
plane. If we can compute the saturation height h as a function of contributing 
area properties, then substitution into (20) will permit calculation of the length 
or area and hollow gradient that provide the saturation height requisite for 
slope failure. 

Independently, Humphrey (1982) and Iida (1984) developed simple, analytic 
expressions for the depth of saturation caused by shallow subsurface flow 
during a specified rainstorm of constant intensity Ro on a hillslope of simple 
geometry with isotropic hydraulic conductivity in the colluvium and an 
underlying impermeable bedrock. Under these conditions, the discharge at 
time t of subsurface flow per unit contour length Q(t) is equal to the rainfall 
rate Ro times the contributing area a(t) per unit contour length at time r: 

Q(t) = R0a(t) (21) 
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This is equivalent to Iida's equation (8) and Humphrey's equation (3.39). The 
discharge rate can be related to slope and soil properties via Darcy's law. The 
specific flux q for flow parallel to a bedrock boundary inclined with slope 8 is 

q = Ks sin 0 (22) 

where Ks is the saturated hydraulic conductivity. The horizontal velocity 
component Fs is equal to q cos 0; thus 

K, = K, sin 0 cos 0 (23) 

The discharge per unit contour length for a depth of saturation h(t) becomes 

Q(t) = h(t)KssmO cos B (24) 

Combining (24) and (21) and solving for h(t) gives 

Ks sin 6 cos 0 

which is equivalent to Iida's equation (9) and Humphrey's equation (3.41). 
The maximum depth of saturation will be achieved when all of the catchment 
upslope of the channel head is contributing. Assuming uniform width, hence 
no flow convergence, (25) reduces to 

h - R°L (26) 
Ks sin 0 cos 0 

The effect of flow convergence is treated somewhat differently by Iida and 
Humphrey, but both made use of a cylindrical coordinate system. Our 
previous analysis argues against this approximation and instead suggests that 
unchannelized basins are well represented by a tipped triangular trough. In this 
case the simplest approximation is to assume that shallow subsurface flow 
leaves the basin through the colluvium in the hollow; hence the ratio c of basin 
width to hollow width (2b) is a measure of the increased catchment area per 
unit contour length. Basin width is usually much larger than hollow width. As 
Hack (1965) pointed out, the basin to hollow width ratio may vary with hollow 
slope. Thus in (25) a(t) equals cL (where L is basin length) for maximum 
saturation depth, which suggests that the consequence of flow convergence in a 
typical unchannelized basin is to increase the contributing area per unit length 
by several-fold, perhaps typically about five times for steep basins. The 
magnitude of the increase is inversely proportional to the ratio of hollow to 
basin width because it is assumed that flow lines are perpendicular to surface 
contours in the hollow. With these limitations in mind we can rewrite (26) to 



account for flow convergence: 

• cRpL . . 

~ Ks sin 6 cos 6 

The equation shows that for a given rainfall the depth of saturation increases 
with gentler slopes, larger hydraulic conductivity, smaller hollow widths, and 
greater hollow lengths, all of which is physically realistic. 

Slope stability 
The linkage between basin length, strength properties and hillslope hydrology 
can be achieved by substituting (27) into (20) and solving for cohesionless soils 
with basin length L: 

cpw.Ro 
1 1 

tan 0 tan 4>' 
(28) 

Because of the assumption used in deriving (28), it is only valid for 
hydrostatic pore pressures where the water depth h does not exceed the soil 
depth; hence (ps -p w )ps - 1 tan <j>' < tan 0 < tan <£'. The upper boundary 
tan <(>' defines those slopes that would be unstable under dry conditions. As 
expected, for a given slope and angle of internal friction, the basin length 
should be greater for soils with high hydraulic conductivity relative to the rain­
fall rate and for basins with weak convergent topography. Within the range 
of applicable tan 0, L at first declines relatively slowly with hollow gradient, 
but above 0.7 tan </>', it declines rapidly to zero at tan 0 = tan <t>'. Humphrey 
(1982, p. 122) obtained similar results, although for much shorter slope lengths, 
for a basin he called an'.'elongate wedge" in which colluvium mantles a bedrock 
step. Kirkby (1978, p. 359) has also sketched qualitatively a decreasing 
distance to divide with increasing slope for a hypothetical hillslope. 

The role of climate is expressed in the steady rainfall rate R0 in (28). The 
soil depth z is of order 0.1 to 1.0 and for typical unchannelized basins with 
c ~ 5 it appears that the ratio Ks/Ro should be about 103. An assumption used 
in (28) is that the entire basin is contributing runoff, and for a given R0 the 
time required for water from the upslope end of a hollow to reach the channel 
head is the hollow length divided by the horizontal velocity component of sub­
surface flow Vs. According to (23), L/Vs = L(KS sin 0 cos 0)_I , which is of 
the order of 106 to 107 or 10 to 100 days. This implies that the location 
of the channel head depends on the cumulative rainfall over a long period 
and the greater the rainfall over this characteristic period, the shorter the 
unchannelized basin length. Shorter basins imply higher drainage density; thus 
(28) agrees with observations that drainage density generally increases with 
greater precipitation in humid areas (see Dunne, 1980; Abrahams, 1984). 

In order to compare the functional relation given in (28) to the field data, 
we have matched the equation with the field observation that a basin of 

http://cpw.Ro
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tan 8 = 0.518 (27.4°) should be about 140 m long. This allows us to treat all 
the constants in (28) as one, evaluate it under the assumption that </>' =46° 
(Reneau et al., 1984), and use this constant to depict (28) in Figure 17.9 
(broken curve). The regression line from Figure 17.4 is shown for values less 
than 0.5 tan <t>'. At values close to 0.5 tan tj>', (28) predicts a length-gradient 
relationship close to the empirical one. The available field data (eight points) 
do not indicate whether (28) or the empirical line derived mostly from less 
steep basins provides a better fit. The rapid decline in length with increasing 
slope shows that hillslopes close to 9 = <j>' are much less stable than hillslopes 
only a few degrees less steep. This suggests that slopes with 0 approaching <f>' 
would be rare; and, in fact, the steepest hollow with a colluvial fill (which has 
recently failed) that we have found in California is 0.75 tan <f>' (38°), and few 
occur above 0.7 tan 0 ' . In Oregon and Washington, a survey of road-cuts 
exposing colluvium-mantled hollows yielded only six hollows with thick 
deposits steeper than 40° in the 47 hollows observed (Dietrich et al., 1982, Fig. 
3A). If the structure of (28) is correct it also suggests that drainage density may 
rapidly increase on steeper hillslopes. This may explain in part why side slopes, 
which are steeper than the hollows, often support smaller subhollows (Fig. 
17.1). As a final comment, (28) indicates that colluvium strength, as controlled 
by the angle of internal friction <j>' strongly influences the required basin 
length. The form of the broken curve in Figure 17.9 remains unaltered, but 
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Figure 17.9 Factors controlling the relation of length to hollow gradient in unchannel-
ized basins. The full straight line is the empirical fit to the data. Curves represent results 
for (29) where \p = CLJ(tan d)k and j and k vary with curve number: (1) j= 1.5, 
k = 0.2, (2) j= 1.0, £ = 0.0, (3) j= 1.0, A: = 0.2. The broken curve is the calculated 
relation based on shallow subsurface flow for 4>' =46°. 
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it is shifted either right or left with corresponding changes in 0.5 tan <t>'. For 
example, if 0' =41° rather than 46°, at tan 0 = 0.577 (30°) the length of the 
basin would, according to (28), decline by 25 percent, and for steeper slopes 
the difference in lengths would be much larger. 

Groundwater flow 
Many of the basins used to define the area, length, and slope relationships 
presented here have hollow gradients much less than that necessary for 
instability in the colluvium at saturation. Not only do the high values of angle 
of internal friction for the coarse textured colluvium suggest this, but satura­
tion overland flow (sensu Dunne, 1978) is commonly observed in the 
downslope ends of the unchannelized basins (e.g., Lehre, 1982; Pierson, 1977; 
and our own observations in California). Except for the case where a fine-
textured soil of low hydraulic conductivity overlies a coarser soil of high 
conductivity (e.g., Rogers and Selby, 1980) it is probably rare for excessive 
pore pressures to develop as a result of shallow subsurface flow. High pore 
pressures and pressure gradients, however, can develop near the surface in the 
deep groundwater flow system drained at the channel head (Dunne, 1980). 
These high pore pressures may contribute to the headward advance of a gully 
at the downslope end of the basin. As in the previous section, then, we propose 
that the channel head occurs where frequent excessive pore pressure causes 
erosion of colluvium and prevents burial of the channel. This instability 
depends both on seepage forces and on the strength of the colluvium. 
Neglecting the contribution from seepage forces, we can rewrite (20) in terms 
of pressure head ^: 

, psZ sin 6 cos d 
V = -

1 1 
tan 6 tan <t>' 

(29) 

Unlike the shallow surface flow, which can be treated as hydrostatic and 
largely two-dimensional, deeper groundwater flow is not easily approximated 
algebraically. Intuitively we might expect the pressure head to increase 
with both slope length and gradient. We have performed a preliminary test of 
this relationship by numerically modeling flow in a saturated, straight, two-
dimensional hillslope using the integrated finite-difference method 
(Narasimham et al., 1978). Three slope lengths (100, 150, and 200 m) and three 
gradients (0.125, 0.25 and 0.5) were used. Figure 17.10 shows the equipotential 
lines (to which the flow is perpendicular) for the 200-m slope of 0.25 gradient, 
a geometry similar to that observed in the field. The high excessive pore 
pressures in the lower end of the slope are largely a consequence of the deep 
downslope vertical boundary on the flow region (lower left wall). This 
boundary condition is appropriate for the case of the hillslope facing a valley 
with a slope of comparable size and gradient on the opposite side. For this 
boundary condition, Figure 17.10B shows the variation in pressure head at 2 m 
below the surface for a site 5 m upslope from the downslope boundary and 
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Figure 17.10 Results of numerical modeling: (A) equipotential lines (in meters) in a 
two-dimensional straight hillslope under complete saturation with a hydraulic conduc­
tivity of 10 5 cm/s and a surface gradient of 0.25; and (B) changes in pressure head 
with gradient for slope lengths of 100, 150, and 200 m at two positions 5 m and 25 m 
upslope. 

25 m upslope from the boundary on the three slope lengths and gradients. As 
anticipated, pressure head \p varies with both slope length and gradient, with 
gradient being more important upslope from the boundary. A two orders of 
magnitude increase in hydraulic conductivity does not significantly alter these 
pressure values. The actual pressures are strongly dependent on the flow region 
boundary conditions, but for a variety of geometries the above dependence on 
slope length and gradient was still observed. Because of the simplification of 
the natural system represented by the model, it seems unrealistic to attempt to 
use an equation for \p as a function of L and tan 0 that is derived from the 
numerical model to explain the field relationships. Instead these results 
primarily suggest that \p increases with both variables. 

Slope stability 
Trial and error analysis of substituting values for the exponents in the equation 
\p = CZ/(tan 6)k, solving for L, and comparing with Figure 17.4 and 17.10 by 
matching the solution with field data at 0.5 tan 0 ' suggests that slope length 
has a stronger influence than gradient on pressure head (i.e., the exponent j 



may be greater than 1.0 and the exponent k less than 0.3). Also, all trials 
yielded convex-up curves rather than the linear relations fit to the data. L 
increases very slowly with low values of tan B, and at high tan d it increases 
very rapidly. The predominance of slope length over gradient may be 
physically correct because L is a surrogate for drainage area, and strong flow 
convergence towards the seepage face at the channel head may be a major 
contributor to the requisite pressure head. Further numerical modeling must 
be done to test this hypothesis. 

The trial and error analysis also revealed one other problem. Projection of 
various solutions for tan 6 greater than 0.5 tan <t>' in all cases gave a curve 
quite similar to the model based on subsurface flow, but the maximum slope 
lengths were less. This finding raises the issue of whether shallow subsurface 
flow or deeper groundwater flow is more important in controlling pore 
pressures responsible for slope stability. Field observations on pore pressures 
and flow paths should help solve this problem. Because of the similarity of the 
results, largely due to the form of 

sin 9 cos 6 
tan 0 tan 4> 

in (28) and (29), the conclusions reached in the subsurface flow section 
regarding drainage density and the angle of internal friction are not altered by 
this analysis. 

An extreme case of "strong" colluvium that under this model would require 
large excessive pore pressures may occur at the sites studied by Mills (1981) in 
which massive boulders of quartzite are deposited in relatively low gradient 
valleys formed in shale. The high angle of internal friction and permeability 
both prevent the development of instabilities due to high pore pressures and, 
as Mills proposed, the basins may tend to migrate laterally. In contrast, Hack 
(1965) presented maps of two hollows in the Martinsburg Shale of Virginia and 
commented on the fine texture of the hollow colluvium. Based on the position 
of channel heads shown on the maps, drainage areas were calculated and 
compared with the regression in Figure 17.4. The areas were 0.63 and 0.72 of 
those predicted. The fine texture of the colluvium would result in a low angle 
of internal friction, which should require less drainage area to maintain a 
channel. The proposed model can be improved by accounting for the seepage 
forces that undermine channel head walls and, in so doing, bring about slope 
failure. Although it is possible to write a simple force balance between the 
weight of the colluvium and the outward-directed drag force caused by seepage 
(e.g., Dunne, 1980), it is difficult at this point to use it in a model for channel 
initiation. It is not yet clear whether the channel head tends to be located where 
the seepage force just equals the weight of the colluvium, or where it exceeds 
it by some large amount. Also it is difficult to estimate the outward component 
of the local pressure gradient because it is strongly dependent on the geometry 
of the flow region. Hopefully future field studies will reveal the most appropriate 
boundary conditions to use in a model that incorporates seepage forces. 
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Conclusion 

Pieces of a quantitative model for the evolution, geometry, and mechanics of 
unchannelized basins on soil-mantled hillslopes are beginning to come 
together. An essential first step is to develop quantitative measures of basin 
characteristics. Initial field observations suggest that there exists a strong 
inverse relationship between the drainage area necessary to initiate a channel 
head and the average hollow gradient of the basin. A similar relationship 
occurs between hollow length and gradient. These data suggest that steeper 
slopes should have more exterior link sources, resulting in a greater drainage 
density. Basin form, consisting of noses, side slopes, and a hollow appears to 
be well represented by the geometry of a tipped triangular trough and typically 
the ratio of hollow slope to side slope is about 0.8. Mass balance calculations 
reveal that rate of thickening of colluvium in the hollow diminishes with time 
due to increasing cross-sectional area of the hollow, and that basins with 
steeper side slopes and more convergent topography have high rates of 
colluvium accumulation. 

We have made an initial attempt to explain the field relationships by 
developing simple approximations for saturation flow depth and pressure head 
as a function of basin geometry and by using these approximations in the 
Mohr-Coulomb failure law to predict the hollow length-gradient relationship 
observed in the field. This analysis has probably raised more questions than 
it has answered. We have not yet firmly established from quantitative field 
observation what processes control the position of the channel head at the end 
of the hollow. Our models suggest that the geometry of low gradient basins 
is controlled by the development of significant excessive pore pressures and 
that changes in length and commensurate drainage area are more important 
than gradient in controlling the pressure head at the downstream sections of 
basins. Both the subsurface flow and the groundwater flow models, when used 
in the Mohr-Coulomb failure law, predict for slopes greater than 0.7 tan <j>' 
a rapid decline in the slope length necessary to initiate a channel head, conse­
quently, we rarely find basins this steep. Despite the limitations of these many 
simplistic models, they strongly suggest that area-slope and length-slope 
relations vary significantly with the strength of the colluvium, particularly the 
angle of internal friction. They also suggest that the functional relationship for 
the length-slope curve should be convex-up rather than log-linear. An 
improvement on the proposed model can be made when seepage forces are 
properly included. 

We have not tackled, by any means, all the major problems concerning 
unchannelized basin geometry. We do not know what controls the width of 
these basins. For a given width, it is not yet known what determines either the 
ratio of hollow slope to side slope or the basin amplitude. Hollow bedrock 
profiles appear to be concave, but we have insufficient data to attempt 
generalizations regarding geometry. The cause of the axial concavity is not 
readily observed either. The mechanism of Calver (1977), whereby bedrock 
scouring varies in proportion to the frequency of high runoff events which in 



turn tend to diminish upslope through the hollow, may be applicable, although 
in this case the curvature might instead be related to the frequency of 
landslide-induced exposure of the bedrock surface. In some cases, the con­
cavity may be the result of a curved failure plane within weathered bedrock, 
as illustrated by Foxx (1984). Finally, as Hack (1965) has emphasized, in many 
unchannelized basins the principal hollow may have several tributaries or 
subhollows. These features also dissect the side slopes to major streams. 
Perhaps, as we have suggested, they arise because the side slopes have steeper 
gradients than the hollows. 
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and T. Dunne, made several useful comments on an earlier draft of this 
manuscript. In response to a telephone conversation, R. Shreve derived the 
relationship between sources and drainage density. Funding for our research 
was provided in part by the National Science Foundation (Grant 
EAR-84-16775). 
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