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In the main text, we presented a summary of the model equations and the
assumptions underlying them. Here we present the full derivation of all di-
mensional and nondimensional equations.

A Derivation of model equations

We begin creating the model by deriving an equation for the rate of change in
soil thickness H. We assume that mass is added to the soil only by conversion
of bedrock to soil from below. Because we are applying mass conservation to
a unit column of soil, the dimensions of soil mass are [M L−2].

d(soil mass per unit area)

dt
= mass input rate−mass loss rate (A.1)

d(ρsH)

dt
= εb −Dinst (A.2)
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Here H is the soil thickness [L], εb is the rate of bedrock lowering due to
conversion of bedrock to soil (also termed the soil production rate) [M L−2

T−1], ρs is the density of soil [M L−3], and Dinst is the denudation rate [M
L−2 T−1], defined as the rate of soil mass loss per unit area. We assume that
the soil production rate εb depends exponentially on soil thickness as in the
formulation of Heimsath et al. (1997, 1999, 2000, 2001, 2005).

εb = ε0e
−αH (A.3)

Here ε0 represents the soil production rate in the absence of soil, and α [L−1] is
a constant that describes the exponential dependence of soil production rate
on soil thickness. If we assume ρs is constant in time and that Dinst is the
sum of instantaneous physical erosion rates Einst and instantaneous chemical
denudation rates Winst, then the rate of change in soil thickness H is:

dH

dt
=

1

ρs

(ε0e
−αH − Einst −Winst). (A.4)

Noting that in a well-mixed soil the CRN concentration Ns [atoms M−1] is the
total number of CRN atoms in the soil column, ns [atoms L−2], divided by
the mass of the soil column, ρsH [M L−2], and assuming that ρs is constant
in time,

dNs

dt
= Ns(

1

ns

dns

dt
− 1

H

dH

dt
). (A.5)

We then assume that the soil gains CRN only through in-situ production of
CRN and through incorporation of CRN from bedrock during soil production
at the soil-bedrock boundary, and loses CRN only through soil denudation.

dns

dt
=

dns

dt
(in-situ CRN production) +

dns

dt
(soil production)

−dns

dt
(loss to denudation) (A.6)

Because Equation A.6 neglects radioactive decay, it is suitable for stable CRN
(3He, 21Ne) and CRN with half-lives that are much longer than the residence
time of minerals within the penetration depth of cosmogenic radiation (10Be,
26Al), and unsuitable for CRN with much shorter half-lives (e.g., 14C). The
production rate of CRN in the soil decreases exponentially with depth, and
thus the in-situ production rate of CRN in the soil column is, expressed in
[atoms L−2 T−1],
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dns

dt
(in-situ CRN production) = ρs

H∫
0

P0e
−ρsz/Λdz

= ΛP0(1− e−ρsH/Λ). (A.7)

Defining Nzb
as the concentration of CRN in bedrock at the soil-bedrock

boundary at depth zb, the rate of CRN supply to the soil by soil production
is Nzb

times the soil production rate:

dns

dt
(soil production) = Nzb

ε0e
−αH . (A.8)

Nzb
varies in time as the cosmic ray flux produces new CRN at the soil-bedrock

boundary (the first term in Equation A.9) and as soil production pushes the
soil-bedrock boundary deeper below the surface where CRN concentrations
are smaller (the second term).

dNzb

dt
= P (zb) +

ε0e
−αH

ρr

(∂N(z ≥ zb)

∂z

)
(A.9)

Because the CRN production rate drops off exponentially as it passes through
matter, and because CRN concentrations below the soil-bedrock boundary
drop off exponentially according to Equation A.10,

N(z ≥ zb) = Nzb
e−ρr(z−zb)/Λ, (A.10)

the rate of change of Nzb
over time is given by:

dNzb

dt
= P0e

−ρsH/Λ − ε0e
−αH Nzb

Λ
. (A.11)

The loss of CRN through soil denudation is the soil CRN concentration Ns

times the denudation rate.

dns

dt
(loss to denudation) = NsDinst

= Ns(ε0e
−αH − ρs

dH

dt
) (A.12)

The rate of change of ns is thus

dns

dt
= ΛP0(1− e−ρsH/Λ) + Nzb

ε0e
−αH −Ns(ε0e

−αH − ρs
dH

dt
), (A.13)
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which can be substituted into Equation A.5 to yield an expression for CRN
concentrations in a well-mixed soil.

dNs

dt
=

1

ρsH

(
ε0e

−αH(Nzb
−Ns) + ΛP0(1− e−ρsH/Λ)

)
(A.14)

Lastly, we derive an expression for the rate of change of mineral concentrations
in the soil column. We define the average concentration of mineral X in soil,
[X]s [mol M−1], as the number of moles of mineral X in the soil column, QX

[mol L−2], divided by the mass of the soil column, ρsH [M L−2]. Thus the rate
of change of [X]s is, assuming a constant soil density,

d[X]s
dt

=
1

ρsH
(
dQX

dt
− [X]sρs

dH

dt
). (A.15)

We now derive an expression for dQX/dt to substitute into Equation A.15 by
applying conservation of mass to mineral X in the soil column:

dQX

dt
=

dQX

dt
(soil production) +

dQX

dt
(mineral generation)

−dQX

dt
(mineral dissolution)− dQX

dt
(physical erosion). (A.16)

In this expression the first two terms represent inputs of mineral X to the
soil, and the last two terms represent losses of mineral X from the soil. The
first term is the rate at which mineral X is supplied to the soil by conver-
sion of bedrock to soil, and is given by Equation A.17, in which [X]r is the
concentration of X in bedrock.

dQX

dt
(soil production) = ε0e

−αH [X]r (A.17)

This second term is the rate of mineral production within the soil, and we
assume it to be nonzero only for secondary minerals. We follow Chamberlain
et al. (2005) in defining sX to be the rate of secondary mineral production
per unit volume [mol L−3 T−1], such that the total rate of secondary mineral
production in the soil column is

dQX

dt
(mineral generation) = sXH. (A.18)

The third term is the rate of mineral dissolution, and we follow the approach
of Chamberlain et al. (2005) in modeling the dissolution rate of mineral phase
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X as a linear function of its specific surface area AX [L2 mol−1] and its con-
centration in the soil [X]s [mol M−1].

d[X]s
dt

(mineral dissolution) = −kXAX [X]s (A.19)

Here kX is the dissolution rate constant [mol L−2 T−1]. Over the entire soil
column, the total number of moles of mineral X lost to dissolution is then

dQX

dt
(mineral dissolution) = −kXAX [X]sρsH. (A.20)

For all primary minerals we calculate specific surface area AX as

AX =
6RXwX

ρXdX

(A.21)

following White (1995), where ρX is the density of mineral X [M L−3], wX is
the molar mass of mineral X [M mol−1], dX is the grain diameter of mineral X
[L], and RX is the surface roughness of mineral X [unitless], which we calculate
following Anbeek et al. (1994). For secondary minerals, which tend to be much
smaller and hence have much larger specific surface areas, we use empirically-
determined specific surface areas. Table C.1 provides a list of published values
for each of these parameters.

Lastly, the fourth term of the mass balance in Equation A.16 is the number of
moles of mineral X lost by physical erosion of soil, and is given by the physical
erosion rate times the concentration of mineral X in the soil.

dQX

dt
(physical erosion) = −Einst[X]s (A.22)

Substitution of Equations A.17, A.18, A.20, and A.22 into Equation A.16
yields the following expression for dQX/dt.

dQX

dt
= ε0e

−αH [X]r + sXH − kXAX [X]sρsH − Einst[X]s (A.23)

Finally, substitution of Equations A.23, A.4, and 15 into Equation A.15 yields
the rate of change in the concentration of mineral X (Equation A.24). We
use Equation A.24 to calculate the evolution of all soil mineral concentrations
over time, including the concentration of an insoluble mineral, a quantity that
is needed to infer chemical denudation rates via Equation 6.
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d[X]s
dt

=
ε0e

−αH

ρsH
([X]r − [X]s) +

sX

ρs

− kXAX [X]s

+[X]s
n∑

j=1

(kjAj[Xj]swj −
sjwj

ρs

) (A.24)

Here n is the number of mineral phases in the soil, [Xj]s is the concentration
of the jth soil mineral phase in the summation [mol M−1], and kj, Aj, sj, and
wj are the dissolution rate constant, specific surface area, secondary mineral
production rate, and molar mass, respectively, of the jth mineral phase in the
summation.

B Derivation of nondimensional model equations

The dimensional differential equations for H, Ns, Nzb
, and [X]s depend on

a number of independent parameters. Here we nondimensionalize these equa-
tions to remove the model’s dependence on soil production parameters ε0

and α and on CRN production parameters P0 and Λ in order to clarify the
dominant controls on soil thickness, CRN concentrations, and soil mineral
concentrations. We do not ascribe particular meaning or importance to the
nondimensionalizations presented here; we applied these nondimensionaliza-
tions merely to eliminate particular dimensional parameters. We note that
other nondimensionalization schemes are possible, and that in all schemes
nondimensional parameters are easily scaled back to their dimensional coun-
terparts.

We begin nondimensionalizing the model by noting that time can be scaled
by a soil production timescale TP = Λε−1

0 , such that nondimensional time t̂ is
given by

t̂ =
t

TP

=
tε0

Λ
. (B.1)

Here and below we denote nondimensional quantities with a carat. We nondi-
mensionalize soil density by dividing by αΛ,

ρ̂s =
ρs

αΛ
, (B.2)

and scale soil depth with the soil production parameter α.

Ĥ = Hα (B.3)
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We nondimensionalize CRN concentrations Nzb
and Ns by scaling them to

the hypothetical soil CRN concentration that would occur at a steady-state
denudation rate of the maximum soil production rate ε0.

N̂zb
=

Nzb
ε0

P0Λ
, N̂s =

Nsε0

P0Λ
(B.4)

Molar mineral concentrations are scaled by their molar masses to yield nondi-
mensional concentrations

[X̂]r = [X]rwX , [X̂]s = [X]swX , (B.5)

and mineral dissolution and production parameters are scaled as follows.

k̂X =
kXwX

ε0

, ÂX =
AXΛ

wX

, ŝX =
sXwXΛ

ρsε0

(B.6)

Here k̂X is the ratio of the dissolution rate of mineral phase X to the maximum
soil production rate ε0, ÂX is the specific surface area of X relative to the
inverse of the gamma-ray neutron penetration depth, and ŝX relates the clay
production rate of X to the maximum soil production rate ε0. We lastly scale
all inferred and instantaneous denudation and erosion rates by the maximum
soil production rate ε0.

Êinst =
Einst

ε0

D̂inf =
Dinf

ε0

=
1

N̂s

Ŵinf =
Winf

ε0

=
1

N̂s

(
1− [Ẑr]r

[Ẑr]s

)
Ŵinst =

Winst

ε0

= ρ̂sĤ
n∑

j=1

(k̂jÂj[X̂j]s − ŝj) (B.7)

Under the transformations in Equations B.1-B.7, the governing equations as-
sume the following nondimensional forms.

dĤ

dt̂
=

1

ρ̂s

(
e−Ĥ − Êinst − ρ̂sĤ

n∑
j=1

(k̂jÂj[X̂j]s − ŝj)
)

(B.8)

dN̂zb

dt̂
= e−ρ̂sĤ − N̂zb

e−Ĥ (B.9)
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dN̂s

dt̂
=

1

ρ̂sĤ

(
e−Ĥ(N̂zb

− N̂s) + 1− e−ρ̂sĤ
)

(B.10)

d[X̂]s

dt̂
=

e−Ĥ

ρ̂sĤ
([X̂]r − [X̂]s) + ŝX − k̂XÂX [X̂]s +

[X̂]s
n∑

j=1

(k̂jÂj[X̂j]s − ŝj) (B.11)

C Tables of parameter values used in model runs
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Table C.2
Nondimensional parameter values used in Figures 3-7

[X̂]r k̂ Â ŝ

quartz 0.2499 8.0×10−9 3.1×104 0

plagioclase 0.4000 3.6×10−6 3.9×105 0

K-feldspar 0.2000 3.7×10−7 8.3×104 0

biotite 0.1500 2.5×10−6 2.0×106 0

zircon 0.0001 0 1.8×104 0

kaolinite 0 3.5×10−8 1.6×107 0.43

ρ̂s = 0.276
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