Rise of the Andes
Carmala N. Garzione et al.
Science 320, 1304 (2008);
DOI: 10.1126/science.1148615

If you wish to distribute this article to others, you can order high-quality copies for your colleagues, clients, or customers by clicking here.

Permission to republish or repurpose articles or portions of articles can be obtained by following the guidelines here.

The following resources related to this article are available online at www.sciencemag.org (this information is current as of September 5, 2013):

A correction has been published for this article at:
http://www.sciencemag.org/content/321/5894/1295.2.full.html

Updated information and services, including high-resolution figures, can be found in the online version of this article at:
http://www.sciencemag.org/content/320/5881/1304.full.html

Supporting Online Material can be found at:
http://www.sciencemag.org/content/suppl/2008/06/05/320.5881.1304.DC1.html

A list of selected additional articles on the Science Web sites related to this article can be found at:
http://www.sciencemag.org/content/320/5881/1304.full.html#related

This article cites 53 articles, 13 of which can be accessed free:
http://www.sciencemag.org/content/320/5881/1304.full.html#ref-list-1

This article has been cited by 37 article(s) on the ISI Web of Science.

This article has been cited by 31 articles hosted by HighWire Press; see:
http://www.sciencemag.org/content/320/5881/1304.full.html#related-urls

This article appears in the following subject collections:
Geochemistry, Geophysics
http://www.sciencemag.org/cgi/collection/geochem_phys
Rise of the Andes

Carmala N. Garzione,1*, Gregory D. Hoke,2 Julie C. Libarkin,2 Saunia Withers,3 Bruce MacFadden,4 John Eiler,5 Prosenjit Ghosh,6 Andreas Mulch7

The surface uplift of mountain belts is generally assumed to reflect progressive shortening and crustal thickening, leading to their gradual rise. Recent studies of the Andes indicate that their elevation remained relatively stable for long periods (tens of millions of years), separated by rapid (1 to 4 million years) changes of 1.5 kilometers or more. Periodic punctuated surface uplift of mountain belts probably reflects the rapid removal of unstable, dense lower lithosphere after long-term thickening of the crust and lithospheric mantle.

The surface uplift of mountain belts, such as the central Andes plateau, has long been thought to be the isostatic response of shortening and thickening of the continental crust. Recently developed isotopic techniques allow us to determine the uplift history of the central Andes independently from the shortening history. These results show that shortening and uplift are temporally decoupled, with shortening and thickening happening over protracted periods of time, whereas uplift occurs geologically rapidly. Thus arises a paradox: Why does slow, continuous shortening and thickening not produce slow, continuous isostatic uplift in the central Andes?

Both crustal thickening and the removal of relatively dense mantle or lower crust can generate isostatic surface uplift (1, 2). Paleoelevation studies help resolve the geodynamic evolution of mountain belts because the rate and lateral extent of surface uplift depends on the processes involved. Here, we synthesize the elevation history of the central Andes, Earth’s second largest mountain belt. We then compare paleoelevation estimates to histories of regional incision, sedimentation, shortening, and volcanicism within the mountain belt to characterize lithospheric evolution and the geodynamic mechanisms that led to surface uplift.

The central Andean plateau (Fig. 1), with a width of ~400 km and an average elevation of ~4 km, is a typical example of an active plate margin where oceanic lithosphere is subducted beneath continental lithosphere. At its widest, the central Andean plateau consists of the internally drained Altiplano basin at an elevation of ~3800 m that is bounded by the Western and Eastern Cordilleras, where peak elevations exceed 6 km. The Western Cordillera is a chain of volcanic edifices associated with the modern Andean magmatic arc, whereas the Eastern Cordilleras and Altiplano basin record a history of folding and faulting. The central Andes have a protorated crustal shortening history spanning the last 50 million years (My) (3–5) that has generated crustal thicknesses of ~70 km below the highest topography in the Eastern and Western Cordilleras and 60 to 65 km below the central Altiplano (6). Geophysical observations suggest that eclogitic lower crust is absent beneath much of the plateau (6). The mantle between 16°S and 20°S shows the lowest P wave velocities below the Altiplano:Eastern Cordillera transition, suggesting that virtually all of the mantle lithosphere has been

1Department of Earth and Environmental Sciences, University of Rochester, Rochester, NY 14627, USA. 2Department of Geological Sciences, Michigan State University, East Lansing, MI 48824, USA. 3Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA. 4Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA. 5Center for Atmospheric and Oceanic Science, Indian Institute of Science, Bangalore, 560 012, India. 6Institut für Geologie, Universität Hannover, 30167 Hannover, Germany.

*To whom correspondence should be addressed. E-mail: garzione@earth.rochester.edu
removed (7–9). In addition, high 3He/4He ratios in hydrothermal fluids and gases across much of the Altiplano and Eastern Cordillera indicate the degassing of mantle asthenosphere-derived magmas (10). Together, these observations support previous suggestions for the southern Altiplano and Puna (11, 12) that both mantle lithosphere and eclogitic lower crust were removed below much of the Altiplano and the western part of the Eastern Cordillera (6). Removal of lower lithosphere might occur rapidly by delamination or convective removal (1, 13) or gradually by ablative subduction of foreland cratonic lithosphere (14, 15). Either case results in an influx of lighter asthenosphere, generating surface uplift of several kilometers. However, rapid removal of lower lithosphere would result in surface uplift in as little as several million years, whereas gradual removal by ablative subduction would generate surface uplift over tens of millions of years, coincident with crustal shortening.

Climate Trends and Subsidence History

The Altiplano and Eastern Cordillera contain thick accumulations of Oligocene through late Miocene fluvial, floodplain, and lacustrine deposits (16). The oxygen (δ18O) and hydrogen (δD) isotopic composition of paleosol carbonates and authigenic clays from volcaniclastic units provide a record of meteoric water composition that is the basis for stable isotope paleoelevation estimates (Fig. 2). Stable carbon isotope (δ13C) values of paleosol carbonates provide a record of plant respiration rates that can be used as a proxy for aridity (i.e., lower plant respiration reflects a more arid climate). Depositional environments within a 3.6-km-thick succession preserved in the eastern limb of the Corque syncline include fluvial channel sandstones and floodplain mudstones in the lower 1.4 km and upper 700 m, as well as a widespread freshwater-to-playa lake system that can be traced more than 100 km along strike. Both sedimentology and carbon isotopes in this section suggest that the central Altiplano became more arid between ~10 and 6 million years ago (Ma) (17). Fluvial channel deposits decreased in thickness and lateral extent up-section, further suggesting a decrease in discharge. Over the same time interval, δ13C values of pedogenic carbonates increased by ~3 per mil (%), suggesting a decrease in plant-respired CO2 (17). Despite evidence for increasing aridity, the δ18O values of palustrine and paleosol carbonates (δ18Oc) decrease by ~3‰ (Fig. 2), a change opposite of the expected trend for higher rates of surface-water evaporation. More positive δ18O values observed in the older part of the record are synchronous with observations of wetter conditions, suggesting that evaporative enrichment of 18O is an unlikely cause for the trend to more negative δ18O values over time.

Sedimentation rates in the Altiplano reflect rates of subsidence relative to the surrounding topography. Sedimentation rates in the central Altiplano and Puna dramatically decreased after 10 Ma (18) (Fig. 3). Between 13 and 9 Ma, sedimentation rates were extremely high, averaging 880 m/Myr (Fig. 3). During this time period, widespread lacustrine deposition suggests underfilled basin conditions. By 8.6 Ma, fluval deposition resumed and subsidence decreased dramatically, averaging 0.12 mm/yr.

Paleoelevation Constraints

Shallow marine deposits of the El Molino Formation require that the Altiplano lay at sea level at the end of Cretaceous time (19). Paleotemperature estimates derived from fossil-leaf phytosynmy in the northern Altiplano and Eastern Cordillera (Fig. 1) suggest that paleoelevations were <1.3 km at ~15 to 20 Ma (20) and <2 km by ~10 Ma (21). Both the oxygen isotopic composition of rainfall and surface temperatures vary as a function of elevation. Stabile oxygen isotope values of pedogenic carbonate and carbonate cement should reflect the composition of soil water and shallow groundwater, which is a reflection of rainfall composition and near surface temperature. The abundance of 13C-18O bonds relative to a random distribution of carbon and oxygen isotopes in carbonate (measured by the Δ17 value of CO2 extracted from carbonates) should record the soil carbonate precipitation temperature (22). Carbonate δ13C values and Δ17 values decrease with time (17, 22, 23), suggesting that elevations increased by 2.5 ± 1 km during late Miocene time, consistent with low elevation estimates from fossil leaves.
pulse of rapid surface uplift of ~1.5 to 3.5 km (2.5 ± 1 km) between ~10 and 6 Ma and perhaps an earlier phase of surface uplift at ~25 Ma. However, limited data between 30 and 20 Ma preclude an understanding of the nature and extent of the older event. In the following discussion, we review geologic histories of the magmatism, shortening, and incision within the central Andean plateau that, when viewed with sedimentation rates and surface uplift history, shed light on the regional geodynamic processes that induced late Miocene surface uplift.

Magmatism and Distribution of Shortening

Widespread felsic magmatism in the Andean plateau began between 18°S and 24°S at ~25 Ma (29) and has been attributed to steepening of the subducting Nazca slab (29). Despite its wide extent, the volume of pre-late Miocene magmatism was small. Most activity (>85%) between 19°S and 23.5°S occurred between ~8.5 and 4 Ma (30, 31). Mafic lavas erupted throughout the northern and central Altiplano beginning at ~7.5 to 5.5 Ma (32, 33) and at ~7 to 3 Ma in the southern Altiplano and Puna (13, 34) (Fig. 5D). One group of lavas that erupted between 25°S and 26.5°S shows trace element and radiogenic isotopic compositions characteristic of an asthenospheric source, inferred to reflect the removal of eclogitic lower crust and mantle lithosphere beneath the southern Altiplano and Puna plateaus (34).

From 30 to 10 Ma, the Andean plateau experienced east-to-west shortening by ~6 to 12 mm/year across the plateau (3, 5). From 10 to 7 Ma, while elevation increased, shortening ceased and deformation propagated eastward into the Subandean zone (4, 35) (Fig. 5C). This shift in the locus of shortening is consistent with surface uplift, which should decrease the horizontal deviatoric compressive stress under the plateau while applying greater force per unit length to the surrounding lowland.

Geomorphology

Changes in the relief structure of the Plateau also imply that surface uplift occurred since ~10 Ma (36–38). Paleosurfaces on both the eastern slope of the Eastern Cordillera (36, 37) and the western slope of the Western Cordillera (38–43) reflect remnants of low-relief drainage systems that were active between ~7 and 12 Ma in the Eastern Cordillera (36, 37) and until ~10 Ma on the western slope (44). Widespread incision of the paleosurfaces in the Eastern Cordillera began by ~6.5 Ma (37) and in the Western slope began between ~9 and 5.5 Ma (40, 42, 43). Cooling ages of minerals in the Eastern Cordillera also imply that rapid incision began between ~15 and 6 Ma in the absence of substantial shortening (45, 46). Reconstructions of the relief in these incised valleys suggest ~2 km of surface uplift of the Eastern Cordillera (47) and ~1 to 2.5 km of surface uplift of the Western Cordillera (40–42). The western slope of the Andes (north of ~30°S) has had an arid-to-hyperarid climate since at least 15 Ma (48–50), indicative of atmospheric circulation patterns similar to the modern pattern, in which rainfall is derived predominantly from the east. Despite dramatically different climates between west and east, the similar timing of incision on the western and eastern slopes supports the notion that incision was induced by surface uplift and rotation of the slopes.

The widespread extent of incision implies that the entire width of the mountain belt—over at least 5° latitude—rose (Fig. 1A) (51). The regional late Miocene paleotopography can be reconstructed using surface uplift estimates in Fig. 4 (for the Altiplano) and the magnitude of relief generated during incision of the Eastern and Western cordilleras (40, 47) (Fig. 1B). There is a large difference in cross-sectional area between the average modern elevation of the paleosurface and the 10-Ma reconstructed topography. For crustal thickening to account for this difference would require shortening rates in excess of 40 mm/year over the 1 to 3 My during which surface uplift occurred. This is four times greater than the observed rates in the Andean plateau over the past 40 My, which seems implausible. Flow of middle-lower crust from the Eastern and Western cordilleras to the Altiplano (52) fails to explain the simultaneous rise of the cordilleras, which should subside or remain the same elevation as lower crustal material flows laterally. We conclude that the rapid rate, magnitude, and regional extent of surface uplift, in addition to crustal thickening, also require a mantle contribution, most likely the isostatic response to removal of eclogite and mantle lithosphere.

Climatic responses to Andean surface uplift may extend beyond South America. For example, the presence of the Andes deflects the Intertropical Convergence Zone to north of the equator in the Pacific, which influences the strength and distribution of monsoonal climates with Pacific teleconnections (53). It is therefore possible that punctuated Andean surface uplift contributed to the reorganization of south Asian climate observed in the late Miocene.

Geodynamic Implications

Crustal thicknesses of 60 to 70 km in the central Andes are the result of protracted shortening and thickening over the past 50 My. Despite extensive crustal thickening, regional reconstruction of paleotopography suggests paleoelevations of <2 km in the Altiplano and 2.5 to 3.5 km in the Eastern and Western cordilleras until ~10 Ma (51). These anomalously low paleoelevations probably reflect the presence of dense ecologic lower crust, which held the surface down. An analogous region today might be the western Sierras Pampeanas in Argentina, with 60-km-thick crust but average elevations of ~1 km (54).

Geologic observations suggest that the internal structure of the Andean Lithosphere has undergone a change since ~10 and 6 Ma. During this time, the entire width of the plateau experienced surface uplift, deep incision of low-relief paleosurfaces initiated on the eastern and western slopes of the Andes, sedimentation rates within the Altiplano basin decreased dramatically while the basin
transitioned from underfilled lacustrine environments to filled fluvial/lake environments, shortening ceased in the plateau and propagated into the foreland, and widespread and voluminous ignimbrite eruption began, followed closely in time by mafic volcanism (Fig. 5). Together, these observations are best explained by the removal of dense eclogite and mantle lithosphere, triggering regional surface uplift of ~1.5 to 2.5 km. The amount of surface uplift requires the removal of eclogite and mantle lithosphere of ~80 to 140 km thick, an amount that fits within the geometry of the subduction zone (51). Removal by drips of downwelling-lower lithosphere can explain the sedimentation history in the Altiplano in that the region above the drip should experience rapid subsidence during drip formation (53), accompanied by rapid rates of sedimentation and underfilled basin conditions. Both rapid sedimentation and underfilled lacustrine conditions are observed in the Altiplano between ~13 and 9 Ma, just before the late Miocene surface uplift (Figs. 3 and 5, A and B). We suggest that the morphology of broad, flat, high-elevation, orogenetic plateaus is the product of phases of both crustal and mantle lithosphere thickening punctuated by discrete intervals of surface uplift associated with the convective removal of dense lower crust and mantle lithosphere. Between ~40 and 10 Ma, crustal shortening, lower crustal flow, and erosion/sedimentation redistributed crustal lithosphere while ecologic lower crust and mantle lithosphere accumulated at depth. This long-term history created the conditions that resulted in lower lithosphere removal between ~10 and 6 Ma. After 6 Ma, continued lower crustal flow and erosion and sedimentation redistributed mass within the crust to enhance the low-relief landscape observed in the plateau today.

References and Notes
16. Supporting online material is available on Science Online.
26. Uncertainties are estimated as in (56) by assuming that the modern climate captures the characteristics of the rainfall process in the past. Using a bootstrap simulation approach, errors are propagated by incorporating the scatter in empirical data that constrain the δ18O versus-altitude gradient, uncertainty of ±25% on the temperature of carbonate precipitation, and scatter in the temperature-dependent 10 fractionation between water and calcite. This yields 1σ errors of ±500 m at elevations <4 km, increasing to ±1000 m at elevations of <1 km. Assuming a Rayleigh distillation process for fractionation during condensation from a vapor mass, higher-than-modern global temperature in the late Oligocene to late Miocene would lower the δ18O versus-altitude gradient, which would cause an underestimation of paleoelevation for distillation from a vapor mass with a similar to modern starting composition (56).
ERRATUM

Reviews: “Rise of the Andes” by C. N. Garzione et al. (6 June, p. 1304). A minus sign was missing from an equation in the third column on p. 1305. The correct equation should read “\(h = -472.5\delta^{18}O_{\text{rainfall}} - 2645 \).”

Post date 5 September 2008