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Earth’s land surface teems with life. Although the distribution of
ecosystems is largely explained by temperature and precipitation,
vegetation can vary markedly with little variation in climate. Here
we explore the role of bedrock in governing the distribution of
forest cover across the Sierra Nevada Batholith, California. Our
sites span a narrow range of elevations and thus a narrow range
in climate. However, land cover varies from Giant Sequoia (Sequoia-
dendron giganteum), the largest trees on Earth, to vegetation-free
swaths that are visible from space. Meanwhile, underlying bedrock
spans nearly the entire compositional range of granitic bedrock in
the western North American cordillera. We explored connections
between lithology and vegetation using measurements of bedrock
geochemistry and forest productivity. Tree-canopy cover, a proxy
for forest productivity, varies by more than an order of magnitude
across our sites, changing abruptly at mapped contacts between
plutons and correlating with bedrock concentrations of major and
minor elements, including the plant-essential nutrient phosphorus.
Nutrient-poor areas that lack vegetation and soil are eroding more
than two times slower on average than surrounding, more nutrient-
rich, soil-mantled bedrock. This suggests that bedrock geochemistry
can influence landscape evolution through an intrinsic limitation on
primary productivity. Our results are consistent with widespread
bottom-up lithologic control on the distribution and diversity of
vegetation in mountainous terrain.
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Vegetation captures solar energy and sends it cascading
through ecosystems, creating habitats for other organisms

and fixing nutrients and carbon from the atmosphere. Vegeta-
tion also plays an important although still incompletely un-
derstood role in the breakdown and erosion of rock (1–3) and
thus the evolution of Earth’s topography (4). Understanding the
factors that determine where vegetation thrives—and where
it does not—is therefore fundamental to many disciplines, in-
cluding ecology, geomorphology, geochemistry, and pedology.
As a substrate for life, lithology can influence overlying vegeta-
tion, spurring endemism due to the presence of toxins (5, 6) and
limiting productivity where rock-derived nutrients are scarce (7–
9). However, lithologic effects on vegetation are generally con-
sidered secondary to climatic factors such as the length of the
growing season and the amount of moisture available for plant
growth (10). Here we show that bedrock composition can drive
differences in vegetation on par with the systematic altitudinal
differences found in mountains between their hot, dry foothills
and cold, wet alpine summits.

Evidence for Bottom-Up Regulation of Vegetation
Our study area, the Sierra Nevada Batholith, is a collection of
geochemically diverse but genetically related plutons that form
the core of California’s most prominent mountain range (Fig. 1
A–D). The Sierra Nevada exhibits sharp altitudinal contrasts in
vegetation (Fig. 1B): starting in the west at low elevations and
moving east and upward, discontinuous oak woodlands grade into
dense conifer forests and finally to nearly barren alpine slopes,
consistent with gradients in temperature and moisture (Fig. 1E).
Primary productivity and evapotranspiration are optimized at

midelevations, reflecting a tradeoff between decreasing tem-
perature and increasing precipitation with altitude (15). How-
ever, even at the highly productive midelevations, vegetation
varies markedly without major differences in climate. For ex-
ample, Giant Sequoia, the largest trees on Earth, grow in groves
adjacent to barren patches where soil is absent and bedrock is
exposed (Fig. 1 C and D). The bare and vegetated areas lie at
similar elevations, ruling out altitudinal differences in climate as
a plausible explanation for the variations in canopy cover (Fig.
1E). Rather, it appears that vegetation is strongly influenced by
underlying bedrock; the contacts between different plutons (13,
14) often coincide with sharp ecotones between densely forested,
soil-mantled slopes and sparsely vegetated, mostly soil-free
bedrock (Fig. 1 C and D).
Other factors besides lithology fail to explain observed dif-

ferences in vegetation. For example, Shuteye Peak, Bald
Mountain, and Snow Corral Meadow were not glaciated in the
Pleistocene (12). However, today they stand largely devoid of
vegetation (Fig. 1 C and D). Moreover, we observe no evidence
of recent high-intensity fire or widespread anthropogenic dis-
turbance that might explain the variable presence–absence of
vegetation and soil (SI Text). To rule out local variations in cli-
mate and topography as possible explanations, we polled the
Kings and San Joaquin watersheds for areas that have the same
multivariate probability distribution of elevation, aspect, and
slope as the Bald Mountain Granite (Fig. 1D), which is exposed
immediately next to the Southern Sierra Critical Zone Obser-
vatory (CZO). Thus, we sampled the landscape outside a prom-
inent bald spot in a way that mimics the underlying pluton as
closely as possible in climatic and topographic factors that might
influence overlying vegetation and soil. If these factors were
important in explaining the differences shown in Fig. 1D, then
the sampled outlying area would closely resemble the Bald
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Mountain pluton in tree-canopy cover. However, we find that
just 10% of the outlying area is bare, compared with roughly
45% of the Bald Mountain Granite (Fig. S1). Thus, we can be
reasonably certain that differences in the underlying plutons—
not elevation, slope, or aspect—govern the sharp contrast in
vegetation shown in Fig. 1D.

Possible Lithologic Controls on Vegetation
Several physical and chemical properties of bedrock could act as
bottom-up regulators of the distribution of vegetation, including
(i) toxin concentrations, which could inhibit growth; (ii) con-
centrations of rapidly weatherable minerals, which could in-
fluence porosity generation in regolith; (iii) concentrations of
clay-forming primary minerals, which could affect the retention
of plant-available nutrients and water; (iv) nutrient concen-
trations, which could limit plant growth; and (v) fracture density,
which could govern access to water, nutrients, and anchor points
for roots. These properties influence the hydrology or chemistry
(or both) of regolith and hence are possible contributors to
lithologic regulation of overlying vegetation. Next we discuss how
each of these properties varies with vegetation across a lithose-
quence in the western Sierra Nevada. We show that the available
evidence is consistent with a bottom-up control of vegetation by
bedrock composition.

Bedrock Geochemistry. To explore connections between vegeta-
tion and bedrock geochemistry, we collected 235 samples of
bedrock from 21 sites and measured bulk geochemistry using
X-ray fluorescence (Fig. 1B and Methods). The geographic coor-
dinates of our samples allowed us to pair the geochemical results
with remotely sensed tree-canopy cover from the National Land
Cover Database (16). Tree-canopy cover reflects leaf area, which
should correspond with primary productivity, as long as the
canopy is partly open to the sky (i.e., not saturated in its leaf
cover). This is the case across much of the Sierra Nevada (17)
and all of our study sites (Fig. 1E). The assumed connection
between forest productivity and tree-canopy cover is corrobo-
rated by stand-scale estimates we made of primary productivity
from tree rings and biomass at two sites (Fig. 2 for locations; SI
Text and Datasets S1 and S2).
Our analyses show that rocks underlying the bare and vege-

tated areas have starkly different bulk geochemistry. For exam-
ple, phosphorus in individual samples varies by a factor of 20
across the sites (Dataset S3). Moreover, geochemical differences
between plutons are large compared with differences within
them; for example, both in the CZO vicinity and elsewhere,
bedrock P concentrations change abruptly at boundaries be-
tween rock types, where vegetation contrasts are likewise sharp
(Fig. 2). Moreover, the sparsely vegetated Bald Mountain
Granite (Kbm) has seven times less bedrock P than the neighboring,
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Fig. 1. Vegetation, climate, and bedrock of Sierra Nevada study sites. (A) Shaded-relief map of California with Sierra Nevada Batholith (outlined in black;
after ref. 11). (B) False-color Landsat mosaic (SI Text) of central Sierra Nevada Batholith showing sharp altitudinal contrasts in vegetation. Bedrock sampling
sites (circles) lie outside the limits of Pleistocene glaciation (transparency; after ref. 12). (C and D) Detailed view of two sampling regions showing simplified
bedrock contacts (lines; after refs. 13 and 14), which often separate sparsely and densely canopied plutons. Triangles mark Giant Sequoia groves; star marks
Southern Sierra CZO. Letters denote rock types: Granites (Bald Mountain, Kbm; Shuteye Peak, Ksp; Snow Corral Meadow, Ksm; Bear Creek, Kbr; Dinkey Dome,
Kdd); Tonalites (Bass Lake, Kbl); Granodiorites (Dinkey Creek, Kdc; Whiskey Ridge, Kwr; Beasore Meadow, Kbe; Camino Creek, Kcc; Mount Givens, Kmg;
McKinley Grove, Kmc); Metasediments (ms). (E) Typical range-perpendicular trend in elevation and tree-canopy cover with labels showing percentiles of
values observed at each distance along the swath shown in B.
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heavily vegetated Dinkey Creek Granodiorite (Kdc; Fig. 2 and
Dataset S4).
The strong bedrock control of vegetation near the CZO (Fig.

2) prevails across our entire lithosequence of midelevation sites
(Fig. 3). Tree-canopy cover varies from 6% to 81% on average
but is uncorrelated with average temperature and precipitation
(Fig. S2 and Dataset S4). Instead, differences in vegetation can
be explained by differences in bulk geochemistry of bedrock.
Site-wide average concentrations of Si, Al, Fe, Ca, K, Mg, and P
in bedrock are all significantly correlated with average tree-
canopy cover (Fig. 3); Si, Fe, and Ca have the largest absolute
ranges (>5 wt % oxide; Fig. 3), whereas Mg and P have the
largest relative ranges, differing by up to 50-fold in concentration
across the sites (Fig. S3). In contrast, trace elements As, Se, and
Cd, which are toxic to plants in high concentrations (18), do not
explain observed contrasts in canopy cover (Dataset S4).
The overlay of geologic maps and Landsat imagery reveals

sharp differences in vegetation across bedrock contacts (Figs. 1
and 2), consistent with a threshold response. In contrast, the
correlations that emerge across the entire lithosequence are
consistent with a continuous gradient in vegetation with changes
in bedrock composition. These correlations explain up to ∼60%
of the variance in tree-canopy cover (Fig. 3), indicating that
bedrock composition is a dominant explanatory variable. The
unexplained variance may reflect many factors including differ-
ences in response to natural and anthropogenic disturbances,
which were not accounted for in our analysis.

Bedrock Mineralogy and Weathering. The correlations between
geochemistry and canopy cover point to several possible mech-
anisms of bedrock control on vegetation. Mineralogy covaries
strongly with bedrock geochemistry (Fig. S4 and Dataset S5) in
ways that might account for differences in weathering (19),
subsurface water-holding capacity, and thus the regolith’s suit-
ability as a substrate for vegetation (20). Increases in Si con-
centrations correspond to increases in quartz and K-feldspar
concentrations and decreases in both plagioclase content and
color index, a measure of mafic minerals (21; Fig. S4). Quartz
and K-feldspar are more resistant to weathering than plagioclase
(22, 23), and weathering of the mafic mineral biotite has com-
monly been implicated in the disaggregation of granitic bedrock
(19, 24). Thus, decreasing canopy cover with increasing Si con-
centrations (Fig. 3) could reflect differences in weathering, which
could influence subsurface porosity and rates of soil production.
In addition, the decrease in plagioclase, biotite, and hornblende
with increasing Si across our sites suggests that the production of
clay via weathering of these minerals may be positively corre-
lated with canopy cover. If so, it would be consistent with clay-
content control of nutrient and water retention.

Nutrient Concentrations in Bedrock. In addition to producing sec-
ondary minerals, weathering also liberates plant-essential nutri-
ents into soil solution (25). Many nutrients including P are derived
exclusively from minerals. Among the mineral-derived macro-
nutrients that are essential for plants, P is required in the highest
concentrations relative to its abundance in the upper continental
crust (26, 27; Table 1). Thus, P is the most common rock-derived
limiting nutrient in terrestrial ecosystems (28). It has recently been
proposed that P limitations can arise because of low P in un-
derlying bedrock in eroding landscapes (25, 29, 30). Across our
sites, bedrock P concentrations span more than an order of
magnitude (Dataset S3) and correlate strongly with tree-canopy
cover (Figs. 2 and 3). This is consistent with a widespread phos-
phorus limitation; although P makes up less than one part per
thousand of bedrock underlying our sites, it may regulate ecosys-
tem productivity and vegetation distributions at the scale of the
entire batholith (Fig. 1 B and E). If this were the case, it would be
evidence for a previously unidentified but nevertheless widespread
intrinsic (i.e., bedrock-related) P limitation; previous examples of
P limitations have been linked to chemical leaching processes that
deplete bedrock of nutrients (e.g., 31, 32), not the initial compo-
sition of the bedrock. Such an intrinsic limitation, if present, could
be more definitively documented via fertilization experiments per-
formed along the lithosequence.

Density of Bedrock Fractures. Higher bedrock fracture density
could promote vegetation by providing footholds for roots and
reservoirs for water storage (20, 33). Thus, differences in fracture
density could help explain the lithologic control of vegetation
shown in Fig. 3. However, for this to be the case, fracture density
would need to correlate strongly with bedrock geochemistry.
Fracture production in the Sierra Nevada has been attributed to
variations in grain size (34); dike occurrence (35); volatile ex-
pulsion (36); frost cracking (37); and thermal, topographic, and
regional stresses (38–40). The relative importance of these
mechanisms in different plutons is a subject of active research.
None of them has ever been linked to bedrock geochemistry in
a way that would explain Fig. 3 (SI Text). However, we cannot
rule out control of vegetation by fractures in the absence of
fracture density measurements across the sampling sites.

Bedrock–Regolith Connections. Our analysis exposes a widespread
bottom-up control of lithology on the distribution of vegetation
in the Sierra Nevada. Mechanistically, the connection presumably
occurs in weathered bedrock (i.e., regolith), where nutrients and
water are accessible to plants. Hence the strong plant–bedrock
connection shown in Fig. 3 is likely filtered through regolith. This
would be consistent with the well-established, crucial role of deep
regolith in sustaining ecosystems in California’s granitic mountain
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Fig. 2. Distribution of vegetation across bedrock with differing phosphorus
content. (Left) False-color Landsat image of CZO vicinity with georeferenced
bedrock contacts from simplified geologic map shown at Right (after
ref. 14). Symbol colors match colorbar scales of Landsat-derived, remotely
sensed tree-canopy cover (16; Dataset S3 and SI Text), a proxy for primary
productivity (Left), and bedrock P concentrations (Right). Vegetated–unve-
getated ecotone coincides with boundary of Bald Mountain Granite (Kbm;
diamonds), a desert in bedrock P relative to more heavily forested Dinkey
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show average (±SEM) tree-canopy cover (Left) and bedrock P concentration
(Right) by rock type. Stars at Left pinpoint productivity surveys (SI Text).
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ranges; studies have shown that plant roots often receive nutrients
and water from mycorrhizal fungi at depth (41) and that ecosystem
productivity can persist on deep water stores during the summer
dry season, long after shallow soils are dry (15, 17, 33, 42).
Regolith nutrient content and water-holding capacity could

vary as a function of bedrock composition (e.g., 43) and thus
explain the correlations in Fig. 3, but the functional relationships
have rarely been documented in granitic landscapes. There is
some indication from the vicinity of the CZO that variations in
regolith can be high within a single geochemically homogeneous
pluton. For example, seismic refraction surveys indicate that
depth-integrated regolith water-holding capacity can vary by
more than an order of magnitude in the space of 100 m on
a single slope (44). This intrapluton variability appears to be
widespread based on road cuts in the area. Hence, unless dif-
ferences between plutons are very large, they will be difficult to
detect without analyses that average over intrasite variability in
regolith water-holding capacity. Nevertheless, catchment-scale
surveys of water fluxes and subsurface properties (from geo-
physical surveys and drilling) should help determine whether
bedrock composition is an important regulator of regolith water-
holding capacity. In addition, fertilization experiments and
measurements of plant-accessible nutrients should determine the
extent to which regolith nutrient content is regulated by bedrock
composition. However, it will be important in any such analysis
to account for top-down biotic influences (e.g., nutrient cycling

and soil retention), which may otherwise obscure bottom-up
effects of bedrock composition.

Implications for Landscape Evolution
Whatever their cause, the variations in vegetation across the
lithosequence likely result in differences in geomorphic pro-
cesses and thus landscape evolution (4). For example, increases
in forest cover might cause systematic variations in soil retention
(45) and bedrock weathering (2) due to differences in rooting
and organic ligand release (1). This should lead to differences in
soil production and erosion by chemical, physical, and biological
processes (46). Cosmogenic nuclides in quartz from bedrock
surfaces and stream sediment help quantify these relationships
(Methods and SI Text). Across our sites, bedrock catchments and
surfaces with little overlying vegetation and soil are eroding more
than two times slower on average than more densely canopied,
soil-mantled areas (Fig. 4). This difference persists across catch-
ments spanning a range of average hillslope gradients, from 6 to
33° (Fig. S5), evidently because exposed bedrock weathers slower
than bedrock covered by soil in the Sierra Nevada (19, 48). Pre-
vious cosmogenic nuclide studies of other granitic landscapes (e.g.,
47) have shown that this is common (Fig. 4). Over time, such
differences in erosion rates should cause relief change, leaving
soil-free bedrock as highpoints in the landscape, consistent with
the observation that barren patches are often higher than their
surroundings in the western Sierra Nevada (Fig. 1 C and D).
Hence, the lithological contrasts that drive the presence and ab-
sence of soil evidently provoke a weathering limitation on land-
scape evolution (in the sense of ref. 49) as well as a productivity
limitation on ecosystems (Fig. 3). This is consistent with a geo-
chemically mediated biotic control on erosion rates that may reflect
differences in bedrock P concentrations; the bare, slowly eroding
Shuteye Peak, Snow Corral Meadow and Bald Mountain plutons
(Fig. 1 C and D) have P concentrations roughly five times lower
than the average continental crust (Fig. 2; cf. Table 1 and Dataset
S4). If deficiencies in bedrock P inhibit vegetation and soil at these
sites, it would imply that a minor component of the bedrock has
significant influence on pluton-scale landscape evolution.

Lithologic Control of Vegetation in Other Landscapes
We interpret the correlations in Fig. 3 and the differences in Fig.
4 to reflect the fundamental role of bedrock composition in
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Table 1. Nutrients in Earth’s crust and conifer foliage

Element

Concentration in
continental crust
(mg g−1) (27)

Relative weight
in plants (26)

Ratio
plant:crust

P 0.67 10 15
S 0.95 5 5.2
K 28.6 35 1.2
Mg 13.5 4 0.3
Ca 29.5 2.5 0.1

Weight relative to weight of N in spruce foliage from laboratory and field
experiments where nutrients were not limiting (26).

4 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1315667111 Hahm et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1315667111/-/DCSupplemental/pnas.201315667SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1315667111/-/DCSupplemental/pnas.201315667SI.pdf?targetid=nameddest=SF5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1315667111/-/DCSupplemental/sd01.xls
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1315667111/-/DCSupplemental/sd01.xls
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1315667111/-/DCSupplemental/sd01.xls
www.pnas.org/cgi/doi/10.1073/pnas.1315667111


governing distributions of vegetation and patterns of landscape
evolution within the sampled midelevation climate zone. The
intrinsic geochemical diversity that apparently influences vege-
tation and erosion at the surface today arose roughly 100 million
years ago due to magmatic processes that distributed rock-
forming elements along an active arc during the convergence of
the Farallon and North American plates (13). The entire bath-
olith shares this common intrusive origin. Thus, it seems likely
that bedrock composition is an important regulator of vegetation
and erosion elsewhere in the Sierra Nevada. If so, then the
relationships identified here may have implications for predict-
ing the upward (and thus eastward) migration of vegetation
under a warming climate (50). The long-recognized eastward
increase in bedrock K concentrations across the batholith (13)
implies that plutons at higher elevations may be less habitable
(Fig. 3) than plutons within the current altitudinal optimum for
ecosystem productivity (Fig. 1E). If so, it could influence future
distributions of snowpack and the timing of snow melt and runoff
(e.g., 51) from a mountain range that collectively supplies roughly
10% of the US population with vital water resources (52).
The plutons sampled in our study span nearly the entire

compositional range of the granitic core of the western North
American cordillera (Fig. 5). This broad group of rocks shares
a subduction-related origin with the Sierra Nevada Batholith
(53), implying that mountains throughout the western United
States, Canada, and Mexico may manifest the lithologic effects
identified here. Globally, plutonic rocks like those in Fig. 5 un-
derlie 5.7% of the land surface (55) and are especially concen-
trated in mountain ranges. Thus, the control of ecosystem
productivity and landscape evolution by bedrock composition
may be widespread in mountain landscapes around the world.
Connections between bedrock and overlying vegetation have

been recognized for hundreds of years and underpin many pub-
lications on species distributions and endemism in different lithol-
ogies (5). For example, so-called “serpentine syndrome,” which
occurs in ultramafic rocks with high Mg concentrations, manifests
in sparse, stunted forests dominated by species unique to serpen-
tinite (6). Meanwhile, low bedrock P has been implicated in the
nutrient-limited fynbos ecosystem of South Africa (8) and some
vegetation-free bedrock of the Colorado Plateau (7); each of these
nutrient-limited landscapes are developed on quartz arenites with P
concentrations similar to the barren granite in Fig. 1 C and D.
However, in granitic terrain, the evidently crucial role of lithology in
regulating pedogenesis, erosion, weathering, and ecosystem devel-
opment has gone undetected until now, perhaps because previous
studies have largely focused on quantifying effects of gradients in

climate, tectonics, and time (e.g., 15, 56–59). Here, we held these
state factors (60) constant across a lithosequence of varying granitic
bedrock. We detected connections between bedrock geochemistry,
vegetation, and landscape evolution across the lithosequence by
coupling old and new datasets of georeferenced climate, topog-
raphy, geology, geochemistry, landscape erosion, and remotely
sensed vegetation.

Conclusions
The connections between bedrock composition and surface
processes are strong enough to produce differences in vegetation
that can be seen from space (Fig. 1 B–D) and moreover are as
large as the differences that arise from altitudinal variations in
climate across an entire mountain range (Fig. 1E). Thus, they
have the potential to obscure or distort trends in chrono-, climo-,
and toposequence studies of ecosystems and landscape pro-
cesses. In the Sierra Nevada, large vegetation differences ap-
parently arise due to compositional differences across granitic
rock types that have traditionally been regarded as a geo-
chemically homogeneous class of bedrock in state-factor studies
of landscape processes. Our results suggest that such studies can
minimize confounding variations by choosing sites with a narrow
range in bedrock composition. Alternatively, the effects of lithol-
ogy on vegetation and erosion can be quantified and thus
accounted for using the approach outlined here. We found
hitherto undetected connections among bedrock composition,
mountain ecosystem productivity, and landscape evolution across
the Sierra Nevada Batholith. Evidence presented here shows that
these connections are strong, underscoring the need for a better
understanding of how life and landscapes are linked across
lithosequences of variable bedrock composition.

Methods
Linking Bedrock Geochemistry, Mapped Geology, and Forest Cover. We sam-
pled fresh bedrock by sledgehammer or drill and quantified bulk geo-
chemistry via X-ray fluorescence. Sample locations were georeferenced with
digitized geologic maps (13, 14) and a raster of tree-canopy cover based on
Landsat 5 and 7 imagery (16). Thus, we paired bedrock geochemistry with
mapped geology and tree-canopy cover (Figs. 1, 2, 3, and 5). Our analysis of
climatic and topographic effects on tree-canopy cover (Figs. S1 and S2) was
based on 10-m elevation data and climate data from ref. 61.

Measuring Long-Term Average Erosion Rates. We used cosmogenic 10Be in
quartz from soil-mantled and exposed-bedrock slopes to measure millennial-
averaged erosion rates (62). We used University of Wyoming (UW) facilities
to purify quartz, dissolve it, and separate Be for analysis. 10Be/ 9Be ratios were
measured by accelerator mass spectrometry (see SI Text). We corrected 10Be
production rates for latitude and mass shielding due to the atmosphere, to-
pography, biomass, and snow. Inferred denudation rates were corrected for
effects of chemical erosion (63).

0.1 1 10 100 1,000 10,000
Erosion rate (mm kyr-1)

Soil-mantled slopes: 57±5 mm kyr-1 (n=13) 

Bare-bedrock slopes: 25±5 mm kyr-1 (n=12) 

Fig. 4. Erosion rates versus land cover. A global compilation of cosmogenic
nuclide data (gray, after ref. 47) demonstrates that erosion from soil-mantled
granitic terrain (Bottom; n = 416) is typically faster than it is from exposed
granitic bedrock (Top; n = 250). This is consistent with cosmogenic nuclides in
samples from the Sierra Nevada study region (black, with labeled averages ±
SEM and number of samples); erosion is more than two times faster on av-
erage in soil-mantled terrain (Bottom) than it is in bare rock (Top). Erosion
rates (Datasets S6 and S7) are jittered to display their distributions.
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Fig. 5. Bedrock composition of study sites (circles) and cordilleran granites
(gray) of western North America. Average (±SEM) bedrock Fe*, defined as
total FeO/(total FeO + MgO), versus average (±SEM) SiO2 for study sites
(color shows mean tree-canopy cover). Shading in plot shows inner 95% of
538 analyses (after ref. 53) of plutonic rocks in North America’s western
mountain ranges (map, after ref. 54). Our lithosequence spans nearly the
entire compositional range of granitic bedrock in the cordillera.
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