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Modification of Wave-Cut and Faulting-Controlled Landforms 
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From a casual observation that the form of degraded fault scarps resembles the error function, this 
investigation proceeds through an elementary diffusion equation representation of landform evolution to 
the application of the resulting equations to the modern topography of scarplike landforms. The mor- 
phologic observations can be analyzed either in the form of one or more cross-strike elevation profiles or 
in the form of the slope-offset plot, a point plot of maximum scarp slope versus scarp offset. Working 
with either or both of these data representations for nine geologic structures, which range in age from 3 
to 400 ka B.P. and in offset from 1 to 50 m, we apply analytical solutions for the vertical initial value 
scarp, the vertical continuous offset scarp, and the finite slope, initial value scarp. The model calculations 
are intrinsically ambiguous, yielding as the final answer only the product •ct (in the case of the initial 
value problem) or the product •cA-• (in the case of the repeated faulting problem); here t is the age of a 
single scarp-forming event, 2A is the vertical slip rate, and •c is the "mass diffusivity." A single profile 
across three sea cliffs along the Santa Cruz, California, coast is analyzed as three separate initial value 
problems. A reasonably constrained age for the sea cliff standing above the Highway 1 platform returns 
•c = 11 GKG (1 GKG = 1 m2/ka). With this •c, we can date the two older sea cliffs. In fact, we do the 
converse: age estimates for these two older sea cliffs based on a uniform fate of uplift both yield the same 
•c as for th• lower sea cliff. We treat a single profile of the Raymond fault in Pasadena/San Marino in 
terms of the repeated faulting problem; for it ihe uplift rate of R. Crook and others yields •c = 16 GKG. 
The very substantial preexisting offset across the Raymond fault must have been buried/leveled some 230 
ka B.P., when the modern topography began to form. Our analysis of the Lake Bonneville shoreline 
scarps reveals a dependence 'of •ct on 2a, suggestive of nonlinear modification processes. This appearance 
is treated with the finite slope initial value scarp model to determine •c = 1.1 GKG for the Lake 
Bonneville shoreline scarps. The suggestion of M. N. Machette that approximately 100,000-year-old, 
meter-high s•arps are "unobservable" in weakly consolidated alluvial terranes of the Basin and Range 
and Rio Grande Rift Valley Provinces can be formulated as •c • 1 GKG. The coincidence between this 
inequality find the Lake Bonneville shoreline •c is striking, and it suggests that the value of •c = 1 GKG 
may be generaily applicable, a s a good first approximation, to the modification of alluvial terranes within 
the semiarid regions of the western United States. The Lake Bonneville shoreline •c is the basis for dating 
four sets of fault scarps in west-central Utah. The Drum Mountains fault scarps can be modeled in 
several different circumstances, but the most likely interpretation is that these fault scarps formed as the 
result of a single episode of normal faulting 3.6 to 5.7 ka B.P. The youngei' age is associated with quite 
low initial slope angles (25ø). The other three sets of fault scarps show no evidence for finite initial value 
slopes. Fault scarps along the eastern base of the Fish Springs Range are very young, 3 ka B.P. We 
estimate the age of fault scarps along the western flank of the Oquirrh Mountains to be 32 ka B.P., which 
meets the weak geologic constraint that they be older than the Lake Bonneville shoreline. Fault scarps 
along the northeastern margin of the Sheeprock Mountains are even older• 53 ka B.P. An intriguing 
consequence of our single-event analysis of these scarps is that an 11.5-m offset occurred in a single 
earthquake. 

INTRODUCTION 

The processes and rates of landform evolution have long 
intrigued students of earth history, but such matters have not 
yielded easily to quantitative analysis. In the first place, a 
myriad of processes contribute to landform modification, and 
these /:an take any number of physical, chemical, biological, 
and, nowadays, CUltural forms. Second, many if not all of these 
processes must depend on the considerable range of environ- 
mental variables that the earth provides, in the form of differ- 
ent climates and geologic materials, for example. Finally, land- 
form evolution implies morphologic changes with time, but 
only rarely is •nything but the present-day configuration 
available for study. 

Given such difficultieõ, a study such as this, which intends 
to analyze scarplike landforms using a highly idealized model 
of erosional evolution, would not seem to hold much promise; 
that it exisis at all is due to three related but distinct circum- 
stances, one of them essentially fortuitous. The first of these is 
the compelling need for more accurate and precise estimates of 
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earthquake recurrenc e intervals. For most seismogenic areas 
of the world the principal uncertainity in earthquake risk 
analysis is the uncertainty in recurrence intervals of poten- 
tially damaging or destructive earthquakes. On the outcome 
of such calculations (and their attendant uncertainties) ride 
enormous sums of human and financial commitments. For 
most of these areas, however, the only available record of 
major earthquakes of the past exists in geologic manifestations 
of faulting. Detailed mapping of active crustal faults sectioned 
by trenches has Often proved fruitful in dating one 6r more 
ancient faulting episodes [e.g., Clark et al., 1972; Sieh, 1978], 
but such investigations are expensive, tim• c0nsi•ming, and 
often as not dependent on special circumstances that allow the 
site to be simultaneously Preserved but exposed. 

Much information concerning ancient faulting episodes and 
recurrence intervals, however, exists in more readily obtain- 
able observations of the morphology of presently existing fault 
scarps. Although the detailed geomorphology of Holocene 
and late Pleistocene fault scarps is a relatively new field [e.g., 
Wallace, 1977; Bucknam and Anderson, 1979], there is now 
ample evidence that fault scarps in different states of degra- 
dation surely reflect different dates of formation [e.g., Wallace, 
1977, Figure 3; Bucknam and Anderson, 1979, Figure 5], the 
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Fig. 1. The geometry of a fault scarp, mostly after Bucknam and Anderson [1979]. In this study, we refer to 2a as the 
scarp offset and 2H as the scarp height. In the presence of nonzero 0 s, these amplitude measurements are not the same (see 
equation (11)); O s and 0 s are, respectively, the scarp slope angle and the far-field slope angle; the tangents of these angles 
are the scarp slope Ou/Ox Ix= o and the far-field slope b, respectively. 

potential difficulties detailed two paragraphs above notwith- 
standing. 

Finally, it has been our casual observation that the form of 
degraded fault scarps resembles the error function; the error 
function, in turn, forms the fundamental solution to the one- 
dimensional diffusion equation for steplike initial conditions 
(for example, a newly formed fault scarp). The fulcrum of this 
investigtion, then, is the notion that the difffusion equation is 
a simple and believable first-order mathematical approxi- 
mation to the erosional evolution of nondissecting alluvial 
terranes. That this seems to be the case is the reason we 
continue at all. 

We develop and rationalize the diffusion equation repre- 
sentation in the next section and discuss in some detail there 

the solutions appropriate for the problems of interest in this 
investigation, but a few general remarks concerning its nature 
and earlier use in geomorphology are appropriate here. Given 
the purposes of this study, our preference for the diffusion 
equation model is not only that it can be obtained with ele- 
mentary and believable assumptions but that it seems to make 
sense, within limits, for the nine geologic structures analyzed 
here. Moreover, the general and macroscopic nature of the 
diffusion equation allows one to know not a thing about any 
specific erosional process; all such effects materialize in a 
single parameter •, the topographic equivalent of the thermal 
diffusivity. To the extent that this equation is valid, then, we 
may study landform modification in much the same way as 
heat conduction was understood in the nineteenth century. In 
the absence of an atomic theory of solids and temperature, 
one did not know the physical mechanisms by which heat 
transport actually took place; one just knew that it did, given 
a temperature gradient. This study proceeds on the same 
basis: there is no statement herein about the mechanisms by 
which mass transport takes place, leading to landform modifi- 
cation; we simply assume that it does, given a topographic 
gradient, and parameterize all such mechanisms with •c, here 
referred to as the mass diffusivity. Nevertheless, we proceed on 
less sure physical grounds' the diffusion equation repre- 
sentation of heat conduction is directly verifiable, whereas our 
model of nonsteady scarp evolution is not. The essence of this 
investigation, then, is not whether the diffusion equation rep- 
resentation of landform evolution is correct, in terms of what- 
ever entirety of "first principles" is appropriate, but whether or 
not this description works, in the sense of explaining geo- 
morphologic observations. 

The diffusion equation representation of landform modifi- 
cation is not new to geomorphology, and G. K. Gilbert in his 
field notes of October 27, 1876, contemplated the connection 
between erosional rounding of badland crests and heat con- 
duction into wedge-shaped bodies (A.M. Johnson and D. D. 
Pollard, unpublished manuscript, 1977, p.71). Even so, Culling 
[1960] seems to have been the first to propose this model 

explicitly and to lay out its underlying assumptions; he noted, 
in particular, the error function solutions arising from initial 
conditions appropriate for faulting. Culling7 [1963, 1965] at- 
tributed the basic processes underlying the diffusion equation 
representation to stochastic properties of soil creep. Hirano 
[1968] discussed the applicability of more general, diffu- 

, 

sionlike equations to various problems in geomorphology and 
compiled a large number of solutions for them. 

Very little work, however, has been done to verify the theo- 
retical postulates of Culling and Hirano, that is, to apply the 
diffusion equation representation to real geomorphologic 
data. Hirano [1969] used his earlier results to investigate the 
long-term topography, uplift rate, and recessional velocity of 
the Yoro Mountains, central Japan. $oderblom [1970] devel- 
oped a diffusion equation representation of lunar crater evolu- 
tion in the presence of impact modification to analyze their 
observed size distribution characteristics. Nash [1980a] uti- 
lized the diffusion equation framework to analyze two sets of 
Holocene shoreline scarps of different ages in Emmet County, 
Michigan. Only Nash [1980b], however, seems to have 
brought this approach to the problems that motivate this 
study, the morphologic dating of late Pleistocene and younger 
fault scarps. 

MODEL REPRESENTATION OF SCARP EVOLUTION 

Homo•7eneous Diffusion Equation 

The basic assumption underlying this study is that mass 
transport due to erosional processes proceeds in the downhill 
direction at a rate proportional to the local topographic gradi- 
ent; specifically, in one spatial dimension x, 

= -K -- 
•x 

where • is the rate at which mass moves downhill, •u/•x is 
the topographic gradient normal to elevation contour, and K 
is the constant of proportionality. Equation (1) accounts, cor- 
rectly or incorrectly, for all the physical processes that con- 

Fig. 2. The functions e -n: (dashed) and erf (6) (solid), r/ and • 
forming the abscissa. For • = x/2(tit) •/2 and t-}O, •--} _+ oo every- 
where on the abscissa, driving err (6) to a step-function-like "initial" 
condition, the dotted lines. Two numerical evaluations of erf (6) are 
given on the ordinate, erf («) = 0.52 and erf (1) = 0.84. 
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Fig. 3.(a) The evolution of a 2-m-high scarp (a = 1 m), according to (6) with b = 0, as a function of x > 0 and 
increasing •ct. Absolute ages are determined by taking •c - 1 GKG, a value found later for the Lake Bonnville shoreline 
scarps. (b) Decay of the scarp slope, as a function of tot and t, t being determined as in Figure 3a. For this scarp (2a - 2 m) 
and this •c (1 GKG), degradation to the angle of repose occurs very rapidly, approximately 1000 years. A scarp twice as 
large has slopes twice as steep at any fixed value of •ct. 

tribute to erosional mass transport on the slopes of interest in 
this study. It is not our intention here to try to establish the 
validity of (1) or even to try to rationalize it in a systematic 
way, other than to note that gravitationally induced erosional 
processes on slopes should be proportional to topographic 
gradient for small enough slopes. Schumm [1967] has verified 
this proposition for the case of rock fragments moving down- 
hill on exposed shale slopes in western Colorado. 

The second assumption necessary for the model devel- 
opment is that conservation of mass holds on a local scale. 
This assumption is more readily justifiable than that for (1), 
but it does preclude dissecting erosional processes and envi- 
ronments. Local conservation of mass cannot be invoked for 

entrenched stream channels, for example; the entrenchment 
itself attests to mass that is now far removed from the present 
channel. Now, if more mass per unit time flows (in the nega- 
tive x direction) across an arc element at x 4- dx than across 
an arc element at x, elevation u between x and x 4- dx will 
increase with time; conversely, elevation will degrade. This 
condition is expressed by 

p dx = - a-3- dx (2) 
where p is mass density in units of grams per square centime- 
ter per centimeter along strike. Eliminating 2(4 from (1) and (2) 
yields 

c•u 1 c• (c•u) c•t pax K•xx =0 (3) 
Taking K to be a material property, independent of x, t, u, 

or c•u/c•x, yields the homogeneous diffusion equation with con- 
stant coefficients, equation (5) below. In fact, there is little 
justification for taking K = const. It is easy to imagine K 
being a function of position if a scarp separates different geo- 
logic materials or a function of time if the structure in its 
lifetime spans significant climatic variations. Even worse, say 
in the evolution of a scarp in alluvial terranes, any preferential 

stripping of fines from the upper block (and their deposition 
on the lower block) will lead to time-dependent, spatial vari- 
ations in K. Finally, if K depends on u or c•u/c•x, (3) becomes 
nonlinear, and solutions to it may not even exist. 

With no a priori information about what the functional 
form of K = K (x, t, u, c•u/c•x) might be, however, we have little 
choice but to proceed on the basis K = const. Setting 

•c _= KIp (4) 

we then have 

0 (5) 

where •c has the usual units of diffusivity. Given that it is 
convenient to express age of the structures of interest here in 
units of kiloanni (1000 years), it is convenient to express •c in 
units of square meters per kiloannum, a unit we denote as a 
GKG in recognition of the remarkable contributions of G. K. 
Gilbert to the matters that form the subject of this study. 

In words, (5) says that when topography is convex upward, 
it erodes; when topography is concave upward, it forms a 
depositional basin for material incoming from higher eleva- 
tion. Equation (5) moreover says that the rate of change of 
topography depends on its curvature; for the same •c, sharp 
features degrade faster than smooth features. All of this seems 
physically reasonable and, at least qualitatively, is consonant 
with any number of observations. The value of •c, of course, 
will vary according to geologic material and climatic con- 
ditions; moreover •c, at best, will be determined as an average 
over whatever climatic conditions are appropriate to the site 
of interest. Finally, we must be alert to variations of •c that 
may depend on either slope or differential elevation, as the 
latter may change along strike of the particular structure of 
interest. 

The solution to (5) for a step of topography 2a imposed at 
x = 0 and t = 0 upon a preexisting surface of slope b (for 
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Fig. 4a. Elevation profile of the Santa Cruz sea cliffs, just east of Majors Creek. Elevation data are from the Santa 
Cruz 7•-min topographic sheet and are presented here at 10 '1 vertical exaggeration. The azimuths and segmentation 
point of two straight-line profiles are shown at the bottom of the figure. The actual topography is shown as connected 
straight-line segments; original positions of platforms and sea cliffs (mostly from Bradley and Griggs [1976]) are shown as 
dashed lines. From lowest and youngest to highest and oldest, these platforms are (with ages in parentheses): D, Daven- 
port; H-I, Highway 1; C, Cement; WE, Western, WI, Wilder; and BR, Blackrock. Sea cliff A, standing above the Highway 
! platform, has been assumed to have been refreshened at the time of that transgression. Sea cliffs B and C have been 
assigned the ages of Western and Wilder platforms, as estimated from (he uplift rate of 0.35 m/ka (see text). The three sets 
of solid dots are model calculations for the evolution of sea cliffs A, B, and C, as discussed in the text and parameterized in 
Table 1. 

example, a single episode of vertical, dip-slip, block faulting of 
a fan surface of slope b) is [e.g., Carslaw and Jaeger, 1959] 

u(x, t) = a erf [x/2 OCt) 1/2] q- bx (6) 

In (6), erf [x/20ct) •/2] is the error function of argument 
x/2(lct) TM 

= e - .2 dr/ (7) err 2(•ct)l/2 •r•7• .•o 
The maximum scarp slope angle 0 s is of much interest in 
detailed studies of fault scarp morphology [e.g., Buckham and 
Anderson, 1979]. The maximum slope in this problem occurs 
at x = 0, and it is 

Ou I a OX x=O (it/it) TM + b (8) 
where we refer to •u/•x I,,--o as the scarp slope and 

tan-•fOu Os= k, gx Ix=o) (9) 

The far-field or fan slope angle 0 s is 

0s = tan - • b (10) 

Figure 1 illustrates the geometry of the scarp slope angle Os, 
far-field slope angle 0 s, surface offset 2a, and scarp height 2H 
(the amplitude measure used by Bucknarn and Anderson 
[1979]) for a scarp perfectly antisymmetric about the origin. 
The scarp topography is shown here as connected straight-line 
segments, that is, according to the observational procedure of 
Bucknarn and Anderson [1979]. While we should not expect 
real scarps to conform to the perfect antisymmetry of Figure 
1, in fact they are often arbitrari!y close to it, provided the 
upper slope O s and lower slope O s a. re well matched; mis- 
matched upper and lower O s are the most frequent breakdown 
of antisymmetry. 

An important feature of the geometry of Figure 1 is that in 
the presence of a nonzero far-field slope, the scarp offset 2a 
and the scarp height 2H are not the same (except at t = 0). 
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Fig. 4b. A space-time plot, correlating high stands of sea level existing at some time [Bloom et al., 1974] with platform 
back edges existing at some elevation. The present elevations of the back edges of the Davenport, Highway 1, and Cement 
platforms are shown in Figure 4a. They were not cut at the same original datum, however. The correlations indicated by 
the dotted lines are for the same uplift rate 0.35 m/ka (slopes of the dotted lines) for all three terraces. On this basis, the 
ages of the Davenport, Highway 1, and Cement platforms are estimated to be 83, 105, and 124 ka, respectively. 

The relation between the two is, according to the geometry of 
Figure 1, 

H= a/f1 tan 0•1 (11) tan 

indicating a significant nonlinear relation between 2//and 2a 
whenever tan 0, is comparable to (it is always larger than) tan 
0/. Within the diffusion equation framework, however, it is the 
offset 2a that drives scarp modification, not 2//. 

The Source Term' Repeated Faulting 

It is common to parameterize those faults that have experi- 
enced many episodes of faulting in terms of a slip rate 2A. For 
uplift (and downdrop) of U = + (and -) At, A, the rate of 
uplift (downdrop), becomes a pure source term for (5)' 

au a2u 

0-7- = A 
Solutions to (12) exist for a variety of initial conditions. The 
one below [Carslaw and Jaeger, 1959, p. 79] is for an initial 
scarp of offset + a at x • 0 cut on a preexisting surface of 
slope b. For x > 0, ,4 corresponds to uplift, and for x < 0, ,4 
leads to downdrop so that u = 0 at x = 0 for all t: 

u(x, t) = (a + At) err 2(•t)•/2 + • err 2(•t)•/2 

- sgn (x) + • e- •2/• + bx (13) 

where 

sgn(x)= +1 x>0 

sgn (x) = -1 x < 0 

and a and ,4 are now positive for all x. For this topographic 
function the scarp slope is 

au I at- 1/2 2AtZ12 a-• ,,:o = (•t•c) z/2 + (me) z/2 + b (14) 

The second term in (14) leads to scarp slope steepening, the 
result of the scarp offset increasing at the rate 2,4. 

Error Functions and Model Solutions 

The properties of error functions are well known [e.g., Cars- 
law and Jaegar, 1959]; several are worth recounting here in 
the context of actually fitting topographic profiles. The error 
function is closely allied with the cumulative probability of a 
Gaussian probability distribution, although the error function 
is arranged to be antisymmetric about the origin with asymp- 
totes of +_ 1 as • • +_ oo, whereas the cumulative probability 
function of a Gaussian distribution is antisymmetric about the 
point (0, 0.5) with asymptotes 0 (•-, -oo) and 1 (•-, + oo). 
Specifically, this arrangement is 

erf (•) = •--i7• e- "• dr/= •t-i77 e- ":' dn 

•:•/2 e -"• dn (15) 

The first integral on the right-hand side of (15) is just twice the 
cumulative probability of the distribution function e -n2, and 
the second (negative) integral reckons to -1. Figure 2 shows 
the functions e -• (dashed) and erf (•) (solid). 

The idea is that the solid curve in Figure 2 resembles a fault 
scarp profile degraded, after some elapsed time, from an initial 
steplike configuration given by u = +_ 1 for • • 0 (dots). This 
element of time enters our calculations through an argument 
of the error function representation formed of two variables, 
distance x away from the scarp and time t after its formation 
(e.g., equations (6) and (13)); that is, • = x/2(•ct) •/2. The nu- 
merical evaluations of erf (•) given in Figure 2 show how the 
product •ct can be easily estimated from actual observations. 
For example, say 84% of the half-scarp offset a is obtained at 
some measured distance Xs,•; since the 84% amplitude point 
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TABLE 1. Model Parameters for the Santa Cruz Sea Cliffs 

Sea 2a, Age, b b •ct, 
Cliff m ka (Upper) (Lower) m 2 

A 50 105 0.04 0.02 1200 
B 30 230 0.05 0.02 2500 
C 31 370 0.03 0.02 4100 

is attained when the argument of the error function is equal to 
1, 

X84 
- 1 (16) 

2(t0t) •/2 

thus determining tot. If t0 is known for whatever (but separate) 
reasons, we can date the scarp; conversely, if the age of the 
scarp is known, we can determine 

Figure 3a shows how a 2-m scarp (a = 1 m) evolves accord- 
ing to (6) (with b = 0), as a function of x _> 0, •ct, and t (using a 
value of •c = 1 GKG, a value close to what we find later for 
the Lake Bonneville shoreline scarps). Figure 3a, then, shows 
only the degrading part of the scarp, that with convex curva- 
ture; the aggrading portion occupying x < 0 is its anti- 
symmetric equivalent (Figure 2). To illustrate the calculation 
at the bottom of the last paragraph, let us say that some 
actual scarp profile for x > 0 looks like the middle curve in 
Figure 3a, with an estimate of x = 0 fixed by the full-scarp 
midheight or perhaps by the point of maximum slope. The 
84% amplitude is attained at 4 m, that is, X84 = 4 m; accord- 
ing to (16), then, •ct = 4 m :, which, of course, is exactly the 
right answer in this synthetic case. 

Figure 3b shows how the scarp slope evolves as a function 
of •ct and t (again for •c = 1 GKG), according to (8), with 
b - 0. Irrespective of the basic validity of (1) and (2) at 0s > 0r, 
the angle of repose _•35 ø, Figure 3b says that any 2a = 2 m 
scarp with 0s •-0r in weakly consolidated alluvium must be 
very young indeed (less than 1 ka B.P.), if our "typical" value 
of K - 1 GKG is anywhere near correct. On the other hand, 
(8) implies that a scarp 5 times larger (2a = 10 m) will have 
0s > 0r 25 times as long, that is for some 25 ka. This makes no 
sense, and the problem is that fault scarps in alluvial material 
can be expected to degrade rapidly to 0r irrespective of 2a, a 
phenomenon not incorporated in (8). We can circumvent this 
problem directly by proceeding to the mathematics of finite 
slope, initial value scarps, as we do in our analysis of the Lake 
Bonneville shoreline scarps. If, however, the time for which the 
scarp "should" be with 0s > 0, according to (8), is significantly 
less than the age of the structure, we can safely ignore this 
problem, and we avail ourselves frequently of this expedient. 

THE DATA AND THE MODELS 

The geomorphologic data considered in this study come in 
two basic forms. The first is simply elevation profiles taken 
normal to strike of the scarp of interest. Observations of this 
sort allow for a detailed assessment of the fit of model to data, 
at the price of some uncertainty as to how representative the 
particular profile is of the entire structure(s) along strike. One 
cannot blindly average a large suite of such profiles to obtain 
the "representative" profile. In the first place, all profiles must 
be normalized according to (6) for whatever differences in 
scarp offsets and/or far-field fan or terrace slopes may exist. 
Second, care must be taken in selecting profiles to avoid local 
drainage patterns, both the upslope channels and their down- 

slope fans; mass transport of this type has been explicitly 
excluded by (2). 

Large numbers of profiles, however, may be parameterized 
efficiently by point plots of the scarp slope (tan 0s) versus the 
scarp offset (2a). These "slope-offset plots" are variations of the 
scarp slope angle/scarp height plots first described by Buck- 
nam and Anderson [1979]. The slope-offset plots used here are 
restructured from the Bucknam and Anderson [1979] repre- 
sentations, so to fit explicitly within the diffusion equation 
analysis with which we shall interpret them. In either form, 
however, plots of this sort are far more representative of the 
structure as it may vary along strike at the expense of losing 
information contained in profiles away from the immediate 
vicinity of the scarp. This loss of information can be impor- 
tant, especially in the presence of nonzero and variable far- 
field slope b. 

In this investigation we make use of both data repre- 
sentations, and in two cases, the Lake Bonneville shoreline 
scarps and the Drum Mountains fault scarps, we perform 
analyses in both data spaces. We begin with profile modeling, 
in the next section, of the Santa Cruz sea cliffs, the Raymond 
fault, the Lake Bonneville shoreline scarps, and the Drum 
Mountains fault scarps; then we turn to the slope-offset analy- 
sis of the Lake Bonneville shoreline scarps and four sets of 
fault scarps in west-central Utah, those at the Drum Moun- 
tains, Fish Springs Range, Oquirrh Mountains, and Sheeprock 
Mountains. In the discussion section, we bring these results 
together, emphasizing the advantages and disadvantages of 
the slope-offset plots. 

Profile Modeling 

The Santa Cruz sea cliffs. South and west of Santa Cruz, 
California, a series of marine terraces ascends the south facing 
slope of Ben Lomond Mountain adjacent to the Pacific 
Ocean. These terraces were cut by wave action during inter- 
mittent glacioeustatic high stands of sea level, as the coastline 
was tectonically uplifted during Quaternary time. The original 
configuration of each terrace was presumably similar to that 
of the terrace being cut today at the modern sea level, a nearly 
horizontal wave-cut platform backed by a nearly vertical, sea- 
ward facing sea cliff. The emergent sea cliffs have degraded 
with time, and the resultant erosional debris has covered the 
platforms below them with thin aprons of alluvium and col- 
luvium. Bradley and Gri•7gs [1976] discuss these emergent 
platforms in some detail, and their results figure prominently 
in our age determinations and initial condition assignments 
for the numerical modeling below. 

From highest (oldest) to lowest (youngest), these terraces 
are, as named by Bradley and Gri•7gs [1976], Quarry, Black- 
rock, Wilder, Western, Cement, and Santa Cruz. The Santa 
Cruz terrace consists of two wave-cut platforms, the Highway 
1 platform (higher and older) and the Davenport platform 
(lower and younger), both presently covered (Figure 4a). At no 
place does a topographic profile perpendicular to the coast 
intersect all six terraces in the sequence. For this study we use 
a topographic profile just southeast of Majors Creek where 
the Blackrock, Wilder Western, and Santa Cruz terraces are 
well preserved (Figure 4a). For dating purposes we project the 
Cement platform/cliff pair onto this profile, using the relative 
elevations of the terraces 9 km to the northwest. 

Bradley and Addicott [1968] have reported U series ages of 
76,000 _+ 800 and 95,500 + 700 years for the two fossil mol- 
lusk localities on the Davenport platform. Kennedy et al. 
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profile traverses the Raymond Basin south of the Raymond fault and the Altadena alluvial slope north of it. To the north 
the profile is truncated at the Sierra Madre fault zone beyond which lie the San Gabriel Mountains. Elevations are taken 
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Boulevard, the elevation is along a north-south line intersecting California one block west of Lake, to minimize the affect 
of a local drainage due south of the intersection of Lake and California. The vertical arrows north and south of the 
Raymond fault indicate breaks in the far-field slopes of possible significance with respect to ancient offsets across the 
Raymond fault (see text). The topography adjacent to the Raymond fault between the 560 and 740 ft elevation contours is 
enlarged in Figure 6. 
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[1982] assign an age of 83 or 105 ka to the Davenport plat- 
form, using amino acid racemization data for the fossil mol- 
lusks and their cool water faunal aspect. Assuming that the 
Davenport platform was cut during the relative high stand of 
sea level 83 ka B.P. (Figure 4b) and also that the sea level 
curve of Bloom et al. [1974] is appropriate, we conclude that 
the Davenport platform was cut 15 rn below modern sea level. 
At Majors Creek the Davenport platform is presently 14 rn 
above modern sea level; it has thus been uplifted 29 rn in the 
past 83 ka, at an average uplift rate of 0.35 m/ka. If this uplift 
rate is valid for the past 124 ka, the Highway 1 platform and 
the Cement platform correlate well with the 105 and 124 ka 
sea level high stands, respectively (Figure 4b). 

The close agreement between the relative elevations of the 
three lowest platforms and those of the three prominent peaks 
on the sea level curve suggests that the assumption of constant 
uplift is valid over the last 124 ka. If we project the uplift rate 
of 0.35 m/ka beyond 124 ka B.P., we obtain tentative ages of 
230 and 370 ka for the Western (82 m) and Wilder (129 m) 
platforms, respectively. 

The subsurface geometry of the buried wave-cut platforms 
are known in some detail [Bradley and Griggs 1976], both 
from detailed mapping of platform exposures and from shal- 
low seismic refraction studies. The positions of their associated 
sea cliffs are known less certainly except where they are ex- 
posed in section by major drainages. In such exposures the 
original sea cliffs are closely aligned with the scarp midheight; 
we have placed them there with attitudes the same as the 
modern sea cliff. Finally, in drawing the platforms we have 
ignored the slight difference in slope between the inshore and 
offshore segments [Bradley and Griggs, 1976]. These plat- 
form/cliff positions are shown as dashed lines in Figure 4a. All 
of them are cut into the Pliocene Santa Cruz Mudstone, 

which, according to Bradley and Griggs [1976] "is thinly 
bedded and highly jointed, which expedites wave erosion and 
stream incision, but its siliceous nature retards decomposition 
once platforms are stranded on the interfluves." 

Inspection of Figure 4a indicates that there is far more mass 
on any platform than could possibly be derived from erosion 
of the upper half of its facing sea cliff. This "excess mass" 
could be the result of windblown sand accumulating on the 
lower platform or debris deposited as interlacing fans as a 
result of streams incised into higher standing sea cliffs; it is 
unlikely to be due to parallel retreat, unless the sea cliffs along 
this profile have retreated 50 rn or more from their original 
stands (which is not suggested by the stream exposures). In 
any event, this "mass excess" is not accounted for in our 
model calculations. 

What confuses matters is that this "excess mass" imparts 
far-field slopes to the Western and Wilder terraces signifi- 
cantly greater than those of their underlying platforms. To 
reckon with this difficulty, we simply choose different upper 
and lower far-field slopes, that of the lower platform for the 
lower slope and that of the modern topography for the upper 
slope. This expedient makes our model calculations in the far 
field look nicer than they would have been had we chosen a 
single b for both upper and lower slopes (e.g., Figure 6), but 
otherwise it is of not much consequence; what matters is 
where the topography has curvature, not where it has more or 
less constant slope. 

The parameters for the model calculations (equation (6)) are 
given in Table 1. Cliff ages are taken to be the age of the 
platform beneath, and we have assumed that sea cliff A was 
refreshened at the time of the Highway 1 transgression. The 
estimates for 2a are scaled directly from the appropriate cliff/ 
platform geometry, and the upper and lower far-field slopes 
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are measured as described in the preceding paragraph. The 
value •ct = 2500 m 2 was estimated for the degrading portion 
of sea cliffB with (16). For t = 230 ka, this yields •c = 11 GKG, 
and we have used this value for each of the three model calcu- 

lations (solid dots) in Figure 4a. The origin of coordinates for 
each model calculation has been placed at the sea cliff mid- 
height. 

The model calculations are in close agreement with the 
actual elevation profiles across the degrading portions of sea 
cliffs A and B; in the case of sea cliff C the model fit for 
the upper slope would be improved with a slightly larger •c 
(• 40% larger). On all three of the lower platforms, however, a 
mass excess exists, a problem we knew of in the absence of 
model calculations. The noteworthy aspect of the model calcu- 
lations is that reasonble agreement between the actual and 
model elevation profiles for all three sea cliffs has been ob- 
tained with the same •c. Barring some untoward coincidence of 
offsetting variations in tc and the age estimates, we may con- 
clude that the relative ages between cliffs A, B, and C are fairly 
well determined, to the extent they may be estimated from 
model fits to the degrading section alone. So, too, are their 
absolute ages, if we may regard the age of cliff A as being 
safely bounded by the 83 and 124 ka transgressions. Thus, for 
example, while our model calculations are not sensitive 
enough to determine whether cliff B is really 200 or 300 ka (as 
opposed to the estimated age of 230 ka), we feel confident that 
it is not 400 ka. In this case, cliff B would have an elevation 
profile quite similar to cliff C. Similarly, it seems likely that 
cliff B must be 2-3 times the age of cliff A, neither much older 
or much younger. 

To assess the validity of the vertical initial value scarp 
model, we estimate the time for which sea cliffs A, B, and C 
"should" have had Os > Or-• 35 ø to be 42, 15, and 15 ka, re- 
spectively, using (8), the parameters of Table 1, the upper slope 
b values, and K = 11 GKG. In the case of sea cliffs B and C 
these times are indeed small compared to the total age of the 
structures. In the case of sea cliff A this time is about 40% of 

the inferred (refreshened) age of sea cliff A. This leads to some 
bias in the true •ct for sea cliff A with respect to our estimate in 
Table 1 based on (6), but one that is less than a factor of 50%, 
as we shall see when we deal with the Lake Bonneville shore- 

line scarps in terms of the finite slope, initial value problem. 
The Raymond fault. Since middle Pleistocene time, the 

northern San Gabriel Valley has accumulated hundreds of 
meters of coarsely sorted alluvium, the erosional debris from 
the San Gabriel Mountains standing just to the north across 
the Sierra Madre fault. Most of this material has been em- 

placed in the form of large, often interlacing, effluent fans, the 
older ones left-laterally offset from their parent streams by the 
Sierra Madre fault, across which significant uplift has oc- 
curred as well. Figure 5 shows the north-south elevation pro- 
file of the Altadena alluvial slope, which is bounded on the 
north by the Sierra Madre fault and on the south by the 
Raymond fault. 

Structurally, this surface is old, perhaps a million years or 
more. It is built from the alluvial units 4 and 3 described by 
Crook et al. [1983], the former thought to have accumulated 
from the middle Pleistocene to about 2 x l0 s years ago, 
while the overlying unit 3 accumulated between ,-•2 x 105 
and ,-• 11,000 years ago. An uncomformity separates the two 
units, expressed in the ancient soils developed on unit 4. Lo- 
cally, the Altadena alluvial slope is covered by even younger 
deposits. 

The topography local to the Raymond fault is plainly much 
younger, and it is this youthful feature we analyze below. 
Crook et al. [1983] present detailed geologic information on 
the history of the Raymond fault, as part of a larger study to 
assess the recency and rate of fault activity in this region. 
Notably, the present-day topographic relief (,-•30 m) of the 
Raymond fault is only a fraction of the total vertical offset 
across it, variously estimated to be 135 m to as much as 775 
m, estimates recounted by Crook et al. [1983]. Figure 6 pre- 
sents a view enlarged from Figure 5 of the topography local to 
the Raymond fault. 

The three model calculations in Figure 6 are all derived 
from the solution to the repeated faulting problem (13). This 
solution is specified by the parameters a, b, tot, and At, A/• 
then being determined; b = 0.01 is a close approximation to 
the lower far-field slope, but the upper far-field slope is almost 
twice this much. Here we use b = 0.01 for both the upper and 
lower far-field slopes to illustrate the effect this parameter has, 
should one estimate it incorrectly by a factor of 2. The first 
model (dashed line) is the preferred fit; for it, a = 0, tot = 4 
x 10 ½ft 2 (3.7 x 103 m2), and At = 50 ft (15.2 m). That is, we 

have assumed that there was no initial scarp and that the total 
offset 2At = 100 ft (30.5 m) has accumulated at rate 2A since 
the time (t = 4 x 10 ½ ft2/K (3.7 x 10 3 m2/tc)) the present to- 
pography began to form. This model closely fits the observed 
topography within 1000 ft (305 m) of the origin, taken (as 
always) at the scarp midheight. For Ixl < 1000 ft (305 m), the 
misfit is never greater than 5 ft (1.5 m) and generally is con- 
siderably less than that; indeed, most of it may be due solely 
to the connected straight-line representation of the actual ele- 
vation. At greater distances, the misfit is greater, entirely the 
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Eig. 7. Shoreline scarp of glacial Lake Bonneville, cut by wave action some 14,5• years ago into an alluvial fan at the 
mouth of Long Canyon, west flank of the 6ilson Mountains, Juab County, Utah. The scarp here is about 15 m high. 

effect of mismatched far-field slopes with respect to the choice 
of b -- 0.01. 

The other two models simply illustrate what can be resolved 
in calculations such as these. The second model (dotted line) is 
the same as the first except that •ct has been increased by a 
factor of 2.25, to 9 x 104 ft 2 (8.4 x 10 3 m2). This is plainly a 
poorer fit to the Raymond fault topography, and we conclude 
that •ct can be readily determined with less uncertainty. As we 
shall see in the two following sections, •ct is resolvable at the 
50% level of uncertainty when detailed topographic observa- 
tions are available. The third model calculation, which is in- 
distinguishable from the second at the scale of the dot size of 
Figure 6, is preposterous geologically but is of interest with 
respect to the effect that repeated faulting has on the scarp 
slope. In this model, •ct --4 x 104 ft • (3.7 x 10 3 m •) as in the 
first model, but A --0 and 2a = 100 ft (30.5 m), that is, this 
model treats the Raymond fault as an initial value problem, 
with all 100 ft (30.5 m) of offset occurring at the remote time 
t = 4 x 104 ftz/•c (3.7 x 10 3 mZ/•c). This model illustrates how 
repeated faulting has a significant effect in steepening the 
scarp slope, more precisely, in keeping it steep. 

Crook et al. [1983] have identified and dated five major 
seismic events on the Raymond fault since 36 ka B.P. from 
exposures in three trenches, two of them at Lacy Park within 
0.5 km of the intersection of the elevation profile with the 
Raymond fault. With some allowance for evidence of three 
additional but undated events and undetected events in the 

same interval, they have inferred an average recurrence inter- 
val of about 3000 years for events with an average vertical 
displacement of 0.4 m, which yields 2A = 0.13 m/ka. For the 
preferred model with At = 50 ft (15.2 m) and •ct = 4 x 104 fi2 
(3.7 x 10 3 me), K/A = 0.8 x 10 3 ft = 240 m and •c = 16 GKG. 
Assuming that the average uplift rate since 36 ka B.P. is valid 
for the entire history of the modern topography which, if 
nothing else, is consistent with the model calculation, we esti- 
mate that the modern topography began to form about 
230,000 years ago. 

With a = 0 and values of A, •c, and b as presented above, 
(14) says that the Raymond fault has never been at Os >_ Or 
(and will not be for another 1200 ka). A worst case analysis is 
that this scarp formed as a single event. For a = 15 m, •c = 16 
GKG, b = 0.01, and A = 0, (14) (now reduced to (8)) yields 9.4 
ka as the time for Os to degrade to 0 r, a negligible fraction of 
the age of the Raymond fault. 

The model tells us, then, at 230 ka B.P., there should have 
been little if any topographic expression along the Raymond 
fault, and yet we can safely surmise that a hundred meters, if 
not hundreds of meters, of offset across the Raymond fault 
had already accumulated by that time. What became of the 
topographic expression of these more ancient faulting dis- 
placements ? 

In the first place, there is, just possibly, evidence for this 
ancient topographic expression in the breaks in slope on 
either side of the Raymond fault, at 2800 ft (853 m) north of 
the fault and at 3600 ft (1097 m) to the south (Figure 5, 
vertical arrows). In any event, however, this ancient relief on 
the Raymond fault and most if not all of its topographic 
expression away from the fault must have been leveled or 
buried near the end of unit 4 time; our model age for the 
modern topography is nearly coincident with the unit 4/unit 3 
unconfirmity. This leveling/burial event must have been a dra- 
matic, and very complete, event somewhere near the end of 
unit 4 time, such that so much fault offset has left so little 
expression at the present time. A fault scarp of 100 or more 
meters high, even if it were many hundreds of thousands of 
years old would, roughly speaking, appear today as a greatly 
exaggerated version of sea cliff C (Figure 4a), given the two 
nearly coincident values of •c. 

The Lake Bonneville shoreline scarps. The precipitous low- 
ering of ancient Lake Bonneville through Red Rock Pass 
14,000 to 15,000 years ago [Scott et al., 1982] stranded numer- 
ous wave-cut shoreline scarps throughout much of western 
Utah (Figure 7). The Lake Bonneville shoreline and associated 
scarps have figured prominently as absolute age, topographic, 
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Fig. 8. Elevation profiles of Lake Bonneville shoreline scarps. The actual topography is shown as straight-line seg- 
ments, the model calculations by point symbols. The profiles are identified by the year, month, and day they were taken; 
their offset 2a; and model value of •ct. (a) Intermediate-sized scarps (2a = 3.50, 5.11, 7.02 m). (b) Large scarps (2a = 11.63, 
12.25 m). (c) Small scarps (2a = 1.79, 1.55 m). 



HANKS ET AL.'. LANDFORM MODIFICATION 5781 

Distance , m 
8 6 4 2 0 2 4 6 8 
I I I I I I I I '1 

• 770322/16 2 a = 1.70 m 

............-c- Kt = 6.25 m z 

770:323/05 2a: 2.80 m 

Kt : 6.25 m 2 

770323/14 
20 = 3.48 m Kt : 6.25 m z 

2a = 5.0 m 

Kt = 12.25 m 2 
.2a = 7.0 rn 
Kt: 20.25 m z 

Fig. 9. Five elevation profiles of the Drum Mountains fault scarps. Topography, model calculations, profile identifi- 
cation, and model parameterizations are the same as in Figure 8. 

and isostatic control points for geologic processes operative in 
the Basin and Range Province since the geologic manifes- 
tations and history of Lake Bonneville were described in the 
monumental work of Gilbert [1890]. 

Sixty one cross-strike topographic profiles of the Bonneville 
shoreline scarps are presently available; this data set spans 
more than an order of magnitude variation in 2a 
(!.01 < 2a < 12.25 m). Seven of these topographic profiles are 
grouped in Figure 8 according to intermediate values of 2a 
(3.50, 5.11, and 7.02 m, Figure 8a), large values of 2a (11.63 
and 12.25 m, Figure 8b}, and small values of 2a (1.79 and 1.55 
m, Figure 8c). The topography, determined from detailed lev- 
eling measurements obtained in the manner of Bucknam and 
Anderson [1979], is shown as the connected, straight-line seg- 
ments. The model calculations (all based on equation (6)) are 
shown as point symbols. The quantities a and b = tan-• (0s) 
are determined from the leveling measurements themselves in 
the manner of Figure 1; the origin of coordinates is fixed at 
the point of the offset midheight. 

In general, these model fits represent a single guess at •ct 
through (16), rounded to a convenient square number so to 
expedite calculations performed with a slide rule and the table 
of error functions from Carslaw and Jaeger [1959, p. 485]. 
Even so, it has usually been possible to reproduce the actual 
topography with a maximum misfit of no more than several 
percent of the full-scale topographic range. Moreover, the 
maximum misfit almost always occurs at one end of the pro- 
file or the other, almost surely the result of slightly mis- 
matched upper and lower far-field slopes. The elevation differ- 
ence, for example, between a 4 ø and 5 ø slope at 10 m distance 

is 17 cm, although we generally do better than this in Figure 8. 
In any event, the topography in Figure 8 can be very closely 
matched by error functions, with the possible exception of the 
bottom profile in Figure 8b. 

The intermediate-sized scarps in Figure 8a all suggest a 
value of •ct near 25 m 2. The upper and lower profiles are 
closely matched by the model calculations, as is 'most of the 
intermediate profile. The misfi.t along the lower one third of 
the middle profile is in the vicinity of 5% of the full-scale 
topography. The value of •ct for this profile is somewhat lower 
as well (20.25 m2). 

The product •ct is larger for the larger scarps, however 
(Figure 8b). The upper profile is closely matched by •ct = 49 
m 2, everywhere at the 1% level or less. A model calculation 
with •ct = 36 m" is shown for comparison and is plainly a 
poor fit to the observations. The lower scarp in Figure 8b, and 
the largest in the entire data set, is harder to fit, in part be- 
cause of the topographic kink 4 m to the right of midheight. A 
choice of •ct > 49 m e (the model value, Figure 8b) would im- 
prove the fit for the lowermost part of the scarp but would 
degrade the fit for the uppermost part. However poor the 
model fit is to the lower scarp in Figure 8b, however, it too 
suggests a •ct '-• 49 m :, again significantly larger than •ct = 25 
m" obtained for the intermediate-sized scarps. 

This dependence of •ct on 2a is also apparent in the smaller 
scarps (Figure 8c). The model results for the smaller scarps 
imply that tot _• 16 m 2, compared to tot = 25 m 2 for the 
intermediate-sized scarps. For the smaller scarps, however, the 
matter is less well-resolved, since tot is harder to fix with cer- 
tainty for the smaller scarps. The top scarp in Figure 8c is fit 
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Fig. 10. Scarp slope angle/scarp height plot for Lake Bonneville 
shoreline scarps (open triangles) and Drum Mountains fault scarps 
(solid circles). Solid triangles denote overlapping shoreline and fault 
data. The smooth curves are of the functional form of equation (17) in 
the text. From Bucknam and Anderson [1979]. 

almost as well with •ct = 25 m 2 as with •ct = 16 m 2. At this 
level of detail, even minor uncertainties in the origin of coordi- 
nates and/or b estimates are important. 

The appearance here is one of nonlinear modification pro- 
cesses; •c apparently depends on 2a, since all of these scarps 
are of the same age. The problem, however, is the one we 
alluded to earlier in the discussion of Figure 3b. Had, for 
example, •ct = 25 m 2 indeed been appropriate for a 12-m-high 
Lake Bonneville shoreline scarp, it would yet have a slope 
angle beyond the angle of repose. Specifically, we estimate 
Ju/Jxlx=o = 0.77 (that is 0• = 38 ø) from (8), using a = 6 m, 
b = 0.09 (a typical fan surface slope for the Bonneville shore- 
line scarps), and •ct = 25 m 2. Fourteen thousand plus years 
after such a scarp was formed in weakly consolidated alluv- 
ium, it hardly seems reasonable that it would stand beyond 
0 r -• 35 ø. We shall return to this problem in the section on the 
slope-offset plots, where we shall treat it in terms of the finite 
slope, initial value scarp, but first we conclude our profile 
modeling with an analysis of cross-strike elevation profiles of 
a set of nearby fault scarps of unknown age. 

The Drum Mountains fault scarps. Some 30 km northwest 
of Delta, Utah, a swarm of normal fault scarps cuts a fan 
surface built on the east flank of the Drum Mountains. Ac- 

cording to Bucknam and Anderson [1979], these scarps are less 
than 12,000 years old, lying as they do beneath the Provo II 
level of Lake Bonneville. On the basis of Scott et al. [1982], 
we take the above date to be 13.5 ka B.P. in this study. More- 
over, several of the scarps cut a bar formed at the Provo II 
level, and these are apparently unmodified by wave action. 
Bucknam and Anderson [1979] presented 49 scarp slope an- 
gle/scarp height pairs, observations we reconsider in a slope- 
offset plot in a later section. These morphologic observations 
are also consistent with the geologic constraints that the 
Drum Mountains fault scarps are younger than the Lake Bon- 
neville shoreline scarps. 

An unusual feature of these fault scarps is their cross-strike 
spread; they form a band some 30 km long and 5 km wide, the 
width of this zone pointing to a complicated near-surface 
faulting geometry. If these faults were all formed at the same 
time, they moreover suggest a complicated and unusual fault- 
ing process. While these scarps need not have formed all at the 
same time, we do know that they are all young, less than 13.5 

ka; moreover, they show no geomorphic expression of having 
been multiply faulted. 

Figure 9 shows cross-strike elevation profiles for five of the 
Drum Mountains fault scarps. Scarp offsets 2a vary from 1.70 
to 7.0 m, the largest scarp in the data set. The top three scarps 
(2a - 1.70, 2.80, and 3.48 m) are all closely fit by equation (6), 
and •ct = 6.25 m 2 is recovered for them all. For the same 

reasons as in the preceding section, •ct is least well resolved for 
the smallest scarp, and tot = 4 m 2 works almost as well as 
tot = 6.25 m 2 for it. Recalling that •ct = 16-25 m 2 for com- 
parably sized Lake Bonneville shoreline scarps and assuming 
that •c is the same for both sets of 2a < 4 m scarps, we esti- 
mate that the smaller Drum Mountains fault scarps are 3-4 
times younger than the Lake Bonneville shoreline scarps, 
namely, 3500-5000 years in age. 

As is evident from even casual estimates of X8,•, the two 
larger scarps (2a = 5.0 and 7.0 m) require larger values of tot, 
the model values being 12.25 and 20.25 m 2, respectively. For 
these scarps, however, there are several possible explanations. 
First, they may be explained by the finite slope, initial value 
problem, as suggested above for the Lake Bonneville shoreline 
scarps. Second, they may be truly older than the smaller 
scarps. Third, they may have been multiply faulted, the ab- 
sence of evidence ordinarily accepted for multiple faulting not- 
withstanding. Finally, they may be subject to nonlinear modi- 
fication processes leading to a larger •ct, even if they were 
formed at the same time as the smaller Drum Mountains fault 

scarps. We address these possibilities when we reconsider the 
Drum Mountains fault scarp data in the slope-offset plot. 

The Slope-Offset Plots 

Bucknam and Anderson [1979] described and employed an 
efficient parameterization of profile data from which compara- 
tive age dating of scarps could be obtained. This is the scarp 
slope angle/scarp height plot, and Figure !0 reproduces the 
first one made, which compares such observations for the 
Lake Bonneville shoreline scarps and the Drum Mountains 
fault scarps [Bucknam and Anderson, 1979, Figure 4]. At any 
scarp height the fault scarps have greater scarp slope angles 
than do the shoreline scarps; the idea is that since the former 
are steeper, they are fresher and younger than the latter. This 
notion is consistent both with the geological constraints of 
Bucknam and Anderson [1979] and with the profile modeling 
results of the last two sections. 

Bucknam and Anderson [1979] moreover inferred a loga- 
rithmic relation between scarp slope angle Os and scarp height 
2/-/(Figure 1), and the curves in Figure 10 are regressions of O s 
on 2H according to the relation 

Os = C• + C2 log (2H) (17) 

where O s is in degrees and 2H is in meters. Beginning with 
Figure 5 of Bucknam and Anderson [1979], the standard repre- 
sentation of such data has become semilogarithmic plots of O s 
versus 2H, so to reduce (17) to sets of staight lines, one for 
each set of scarps of interest [Mayer, 1982; Machette, 1982]. 

The principal limitation of the form (17) is that it precludes 
the use of the one datum that is model-independent; specifi- 
cally, according to any realizable model of scarp modification 
whether it be (5) or anything else, we must be able to recover 
the far-field slope angle 0•. in the limit of vanishing scarp 
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Fig. 11. The scarp slope angle/scarp height (open circles) and slope-offset (solid circles) representations of the Lake 
Bonneville shoreline scarps. The arrows from an open circle to a solid circle trace typical trajectories between the different 
representations of the same profile. These vectors arise mainly from the differences between 2a and 2H for the same scarp 
(Figure 1 and equation (11)), since the linear transformation 0 s = 55 tan 0 s is a very close approximation at these small 
angles (_<30ø). For convenience of plotting, however, the linear transformation between the right-hand and left-hand 
scales is O s = 50 tan 0 s. The dashed straight line yields •ct = 65 m 2 and b = 0.19, the inverse tangent of which is 11 ø. This is 
about twice the center of the fan slope angle distribution (inset, where N is frequency of occurrence and 0 s is in degrees). 

height. Equation (17) does not allow us to recover this "inter- 
cept value," but (8) does, and we recall it here: 

ju I a •xx ,•= o -- tan O s - (met)'/2 + b 
which returns us to the restrictions of the diffusion equation 
representation of a single, vertical scarp-forming event at 
t = 0. The application of (8) to actual observations, however, 
requires a restructuring of the Buckham and Anderson 1-1979] 
representation. In the first place, it is tan Os that is to be 
plotted on the ordinate, not Os; in the second place, it is a (or 
2a) that is to be plotted on the abscissa, not 2H. As we empha- 
sized earlier (equation (11) and Figure 1), these two amplitude 
measures are not the same in the presence of nonzero b. Fin- 
ally, in the presence of variable b, it is to be recognized that 
even the same set of scarps of the same age is not to be 
represented by one line in the slope-offset plane but by a 
family of parallel lines, one for each significantly different b. 
That is, variable b introduces systematic scatter to the slope 
offset plot. Two structures have different ages, more precisely 
different products of tot, only if their respective tan Os- 2a 
lines have different slopes. 

Figure 11 illustrates how the transformation from the 
Os- 2H representation (open circles) to the tan Os - 2a repre- 
sentation (solid circles) works for all 61 Lake Bonneville 
shoreline observations. Arrows connecting an open circle to a 
solid circle show how the two different point representations 
of the same profile differ for several different trajectories. In 
this linear space, the tan Os-2a representation eliminates 
most, but not all, of the curvature in the Os- 2H repre- 
sentation. Although it is easier to illustrate the effect of vari- 
able b in other, more manageable slope-offset plots, we note 
here that the solid circles labeled 4 and 22 come from profiles 
with the smallest (0j• = 1.8 ø) and largest (0 r = 13.0 ø) fan slope 
angles, respectively, in the entire Lake Bonneville data set. 

Consistent with (8), we offer a straight-line "fit" (dashed line) 
to the slope offset data (solid circles) in Figure 11. Although 
this is not a bad fit to the observations, especially in the range 
2 <• 2a <• 9 m, it is also clear that scarp slopes for both 2a < 2 
m and 2a > 9 m fall noticeably below this straight line (sug- 
gestive of the •ct - 2a dependences of which we spoke earlier). 

Another problem is that the slope of this dashed line yields 
•ct = 65 m 2, larger than any value obtained in the section on 
profile modeling Oct = 16 to 25 m 2 for 2a < 2m; •ct = 25 m 2 
for 3.5 _< 2a _< 7 m; •ct _• 49 m 2 for 2a >_ 10 m). Even worse, 
the intercept value of this straight line is b = 0.19 or 0 r = 11 ø, 
twice the average fan slope of 5ø-6 ø (inset of Figure 11). What 
we need now to interpret the Lake Bonneville shoreline slope- 
offset data in particular and to work in the slope-offset plot in 
general is the slope-offset relation for the finite slope, initial 
value scarp. 

A very general solution to the homogeneous diffusion equa- 
tion (5) for any antisymmetric initial topography f(x')= 
-f (- x') is 

u(x, t) = 2(ruct),/2 f(x'){exp [-(x - x')2/4•ct] 
-exp [-(x + x')2/4•ct]} dx' (18) 

with u(-x,t)= -u(x,t) [Carslaw and daeqer, 1959, p. 59]. At 
any time t, the scarp slope for this topography is, differ- 
entiating (18) and setting x = 0, 

Ju 1 1 

•X x=O 2(/1:) 1/2 0Ct) 3/2 

oø•X•(X ') exp (-x'2/4tct) dx' (19) 
We suppose that the scarp forms as a ramp function with 
slope cz for [x'[ < Ix,I= a/s, where a is the half-scarp offset as 
before and that this scarp-forming event occurs on a preexist- 
ing surface of uniform slope/• - b. Then 

f(x') = crx' Ix'l • IXl[ = a/or (20a) 

f(x') = _+ a +/•x' ]__+ x'] >_[ + xl[ = a/o• (20b) 

Substituting equations (20) at x' >_ 0 into (19) and integrating 
yields 

Ju I =(cz-/•)erf[ a/or ] Jx x=o L2(•t)•/21 +/• (21) 
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Fig. 12. Slope-offset relations for the vertical initial value scarp (dashed lines, equation (8)) and the finite slope, initial 
value scarp (solid curves, equation (21)), all lines and curves specified by the parameter •ct (m2). The choices of 0• - 0.6 and 
b =/• = 0.1 are nominally consistent with the Lake Bonneville shoreline slope-offset data (see Figures 11 and 13 and 
associated discussion in text). 

The equivalent result for the initially vertical scarp is, again, 
equation (8)' 

I a 6•X x=O (ItKt) 1/2 
-•+b 

where b = fl = the far-field slope. 
(Less obvious is how (21) reduces to (8) as the initial scarp 

slope tends to vertical, that is as • • co. This may be shown 
by recognizing that for finite a, the limit •--} cc implies the 
limit Xl --, 0, where xl is defined in equations (20). Substitute 
xl- a/cz into (21) and expand it in a Taylor series about 
xl = 0 to obtain (8).) 

Figure 12 compares evaluations of (21) and (8) for five 
choices of tit: 1, 4, 9, 16, and 25 m2; (8) is also evaluated for 36 
m 2. In all cases, • = 0.6 and//= 0.1 were used in (21), values 
nominally consistent with the Lake Bonneville shore data to 
which we return shortly. At fixed tit the finite slope initial 
scarps always have smaller scarp slopes than the initially verti- 
cal scarps for 2a > 0; the difference between them becomes 
progressively larger, at any fixed tit, for increasing offset 2a. 
Physically, we may look at these differences in the following 
way: a large 2a scarp at fixed • < • appears much older than 
it is relative to the • - cc calculation (8), because in the latter 
framework we think a lot has happened to c•u/c•x I,,=o, when in 
fact nothing has happened to it. In any event, the nonlinear 
form (21), which seems to be just what we need to interpret the 
Lake Bonneville shoreline slope offset data in Figure 11, arises 
purely as a matter of initial condition geometry, not as a 
matter of nonlinear modification processes. 

The Lake Bonneville ti. In Figure 13, we plot the Lake 
Bonneville shoreline slope-offset data alone (solid circles of 
Figure 11); Figure 12 may be used as a template for Figure 13, 
and by inspection one infers ti between 9 and 25 m 2. In Figure 
13, we present three evaluations of (21), to illustrate, in addi- 
tion, the effect of variable •; we take/• = tan 0 s = 0.1 to be 
well determined by the inset of Figure 11. The three calcula- 
tions are for tit = 9 m 2, cz = 0.5; tit = 16 m 2, •z = 0.6; and 
tit = 25 m 2, cz = 0.7. We consider the tit = 16 m 2, • = 0.6 
curve to be the best overall fit to the data; thus we determine 
ti- 1.1 GKG for the Lake Bonneville shoreline scarps if we 
may assume, as this model requires, that the scarps were 
formed with initial slope angles of 31 ø, just somewhat less than 
the conventionally assumed 0r = 35 ø. Even so, we note that 

the tit - 9 m 2, cz = 0.5 curve appears to be the slightly better 
fit for 2a < 4 m and that the tit- 25 m 2, cz = 0.7 curve ap- 
pears to be the slightly better fit for 2a > 8 m. Thus nonlinear 
modification processes may yet have contributed to the pres- 
ent morphology of the Lake Bonneville shoreline scarps. For 
the purposes of this investigation, however, we can safely ne- 
glect them. Any remaining uncertainties in the Lake Bonneville 
shoreline K are surely no more than ___50% for a range in 
2a that spans an order of magnitude. This uncertainty can be 
reduced even further if we can discount the tit - 9 m 2, cz = 0.5 
model as having an unreasonably low initial slope angle (26ø). 
The Fish Springs Range fault scarps (Figure 15), for example, 
show no indication of having bounding scarp slopes at 0.5 (or 
for that matter at 0.6). While these are the youngest fault 
scarps we analyze in this study, they are, at an estimated age 
of 3000 years, hardly brand-new. 

It is worthwhile noting that while the estimate here of 
tit = 16 m 2 is 4 times less than that obtained (65 m 2) from the 
straight-line fit (• = •) to the slope offset data (Figure 11, 
dashed line), it is much less discordant with the tit results from 
the profile modeling. For the smaller scarps (2a < 2 m), we 
also obtained tit = 16 m 2, and the value for the intermediate 
scarps (3.5 < 2a < 7 m) is only nominally larger (tit = 25 m2). 
Only for the very largest scarps did the profile modeling yield 
a significantly larger tit (49 m2). The bias in tit for the largest 
scarps is not surprising, since the tit- 16 m 2 dashed-line 
model in Figure 12 reveals that any initially vertical Lake 
Bonneville shoreline scarp with 2a •> 7 m "should" yet stand 
at 0s > 0r. What is surprising, in view of this geologically pre- 
posterous implication, is that scarps of this 2a and only some- 
what smaller (Figure 8a) yield tit values (20-25 m 2) from the 
initially vertical scarp model that are only nominally biased 
(50% or less) with respect to that obtained from the finite 
slope, initial value calculations. It is for this reason that we 
believe that the tit value for Santa Cruz sea cliff A is not 

significantly biased, even though it "should" have spent 40% 
of its age at Os > Or according to (8). The scarps in Figure 8a, 
for example, all "should" have spent a greater fraction of their 
age at Os > Or. 

The age of the Drum Mountains fault scarps. Figure 14 is 
the slope-offset plot for all 49 profiles across the Drum Moun- 
tains fault scarps. The solid symbols indicate those profiles for 
which 0 s has a first significant digit of zero. Nor surprisingly, 
according to either (8) or (21) the scarp slopes for these profiles 
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Fig. 13. The Lake Bonneville shoreline slope-offset data alone (solid circles of Figure 11), together with three evalu- 
ations of (21) to illustrate the effect of variable ct. The preferred calculation is the •ct - 16 m 2, ct- 0.6 model, yielding 
•c = 1.1 GKG for the Lake Bonneville shoreline scarps. 

always occupy the lower range of 0s at any value of 2a. A 
significant feature of the data is the sharp break in the trends 
of the data about the vertical line 2a -• 4 m. For 2a < 4 m, the 
straight-line fit (dashed line) seems reasonable, and from it we 
obtain •ct - 5.8 m 2 and 0 s - 2 ø. The former is in good agree- 
ment with the profile modeling of the three smaller scarps 
(Figure 9), for which we obtained •ct = 6.25 m2; the latter is in 
good agreement with the center of the distribution of fan slope 
angles (inset, Figure 14). With •ct = 6 m 2 for the smaller scarps 
we estimate their age to be 5.6 ka, using the Lake Bonneville •c 
of the last section. 

The larger scarps are harder to deal with, but the negative 
curvature of the slope-offset data together with the very flat 
faces of the larger scarps (2a = 5.0 and 7.0 m, Figure 9) sug- 
gest the finite slope, initial scarp calculation (21). Two are 
presented in Figure 14, one for •ct = 6.25 m 2, 0•--0.6 and the 
other for •ct = 4 m 2, 0• = 0.5. The latter is the better and a 
good fit to the data, but for this model we must rationalize the 
low initial scarp angles of 26 ø . The other model is not so good 
a fit to the data, but it gives us less problems rationalizing 
initial angles of 31 ø . In either case, however, all of the scarps 
are of the same age, 3600-5700 years if either value of •ct is 
permissible. This is almost exactly the same result we obtained 
in the profile modeling section, although there it applied only 
to the smaller (2a <• 4 m) scarps. 

Yet another way of considering the slope-offset data for the 
Drum Mountains fault scarps is with the repeated faulting 
slope offset relation (14). Assuming the uplift rate A to be 
constant and setting (2a) •/2 -- (2At) •/2, we may write (14) as 

w = (2a) •/2 + 0.03 (22) 
•X x=O 

where initial value scarps have been neglected (set equal to 
zero) and b = 0.03 on the basis of the fan slope distribution 
(inset, Figure 14). However naive this continuous slip repre- 
sentation for a discrete faulting process (that need involve no 
more than two events), equation (22) says that the scarp slope 
should increase with (2a) •/2, and this seems to be consonant 
with the observations. The dot-dashed curve in Figure 12 has 
been evaluated with (A/r•tc)•/2= 0.175 m -•/2 which, for the 
Lake Bonneville •c, yields an uplift rate A = 1.1 x 10 -4 m/yr. 
To form 6-m-high scarps at the rate 2A then requires 27 ka. 
This violates the geologic constraints by a factor of 2 in age. 

Since the Lake Bonneville shoreline •c is unlikely to be un- 

certain to a factor of 2, the repeated faulting model does not 
seem likely. On the other hand, it is worth remembering that 
however certain we may regard the Lake Bonneville shoreline 
•c to be, this does not necessarily mean we can transfer it to 
the Drum Mountains fault scarps with comparable uncer- 
tainty. If, for some reason, the true Drum Mountains fault 
scarp •c is larger than the Lake Bonneville shoreline •c by only 
a factor of 2, multiple faulting for the larger Drum Mountains 
fault scarps remains a possibility (to the extent (22) fits the 
data). Nevertheless, it seems more likely that all the Drum 
Mountains fault scarps were formed in a single episode of 
normal faulting 3.6-5.7 ka B.P. Our preferred estimate is 5.6 
ka, on the basis of •ct = 6 m 2 being valid for the profile mod- 
eling and the slope-offset representation for the smaller (2a •< 
4 m) scarps and our reluctance to accept 0• = 0.5. Moreover, as 
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Fig. 14. Slope-offset plot for the Drum Mountains fault scarps. 
The smaller scarps (2a < 4 m) are well represented by the straight-line 
fit (dashed line), equation (8) with •ct- 5.8 m 2 and b = 0.03. The 
former is in good agreement with the results from profile modeling, 
and the latter is in good agreement with the median of the distri- 
bution of fan slope angles (inset). The two solid curves are an evalu- 
ation of (21) with the indicated parameters (and fi = 0.03), and the 
dot-dashed curve is a repeated faulting model according to (22); all of 
these calculations are discussed at length in the text. The solid circles 
are slope-offset representations of profiles for which 0f has a first 
significant figure of zero. 
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Fig. 15. Slope-offset plot for the Fish Springs Range fault scarps. 
"Greater than" symbols refer to slope-offset pairs with 0 s > 11 ø, and 
the "less than" symbols refer to slope-offset pairs with 0 s < 4 ø. The 
dashed-line fit yields •ct = 3.3 m 2 and 0 s = 9 ø (inset, as in Figures 11 
and 14). 

we shall see in the next section, the younger age estimate is 
nearly coincident with the age of the Fish Springs Range fault 
scarps, which morphologically appear to be distinctly younger 
than the Drum Mountains fault scarps. 

Other fault scarps in west-central Utah. Figures 15, 16, and 
17 are, respectively, the slope-offset plots for fault scarps of 
unknown age near the eastern base of the Fish Springs Range, 
85 km northwest of Delta, Utah; along the western margin of 
the Oquirrh Mountains, southwest of Salt Lake City; and 
along the northeastern flank of the Sheeprock Mountains, 60 
km north of Delta. All of these scarps cut weakly consolidated 
alluvial material similar to that cut by the Lake Bonneville 
shoreline. In all cases, the slope-offset data exhibit little if any 
curvature, in sharp contrast to the Lake Bonneville shoreline 
and Drum Mountains fault scarp data. In this section, then, 
we work exclusively with (8); the data themselves are reason- 
ably well behaved with respect to straight-line model fits, and 
there is only one problem with intercept value mismatches, a 
problem that cannot be resolved with (21). 

The Fish Springs Range data were considered by Buckham 
and Anderson ['1979], who noted that these scarps are younger 
than the Provo II level of Lake Bonneville. Both the freshness 

of the scarps themselves and their positioning with respect to 
the Lake Bonneville shoreline data on the scarp slope angle/ 
scarp height plot suggested to Buckham and Anderson [1979] 
that the most likely age of these fault scarps is "a few thou- 
sand years." 

In Figure 15, the straight-line fit to the data yields •ct = 3.3 
m 2 and 0œ--9 ø. The age of these scarps is then 3 ka, given 
that the Lake Bonneville shoreline •c -- 1.1 GKG is appropri- 
ate. The estimated fan slope is only slightly greater than the 
average fan slope, the distribution of fan slopes being shown 
as the inset. Data from profiles with fan slopes greater than 
11 ø are indicated by the "greater than" symbol, and data from 

profiles with slopes less than 4 ø are indicated by the "less 
than" symbol; generally, the former lie above the straight-line 
fit, and the latter lie below it, as expected. While this is by no 
means a one-to-one correlation, it does indicate that some of 
the "scatter" in such plots is a systematic effect of variable 
far-field slope. 

The Oquirrh Mountains fault scarps are cut by the Lake 
Bonneville shoreline and thus are older than 14-15 ka B.P. In 

Figure 16, the straight-line fit is hardly we!! determined, and 
the data are limited in number; it yields •ct = 35 m 2 and 0f -- 
5 ø . The age of these scarps, again as fixed by the Lake Bonne- 
ville shoreline •c, is 32 ka, exclusive of the uncertainty in esti- 
mating the true slope of the observations. This age estimate 
meets the weak geologic constraint. The two points at 
2a = 31. and 3.2 m possess the largest 0f in the data set, 6.5 ø 
and 5.5 ø, respectively, and have not been given much consider- 
ation in the straight-line fit. 

The final example is the Sheeprock Mountains fault scarps 
(Figure 17), for which there is no field control on age. The 
straight-line fit is remarkably good for the 2a < 7.2 m data. 
The high point at 2a - 7.6 m is associated with the largest fan 
slope, 0f- 7.3, and even the point at 2a = 11.5 m is not far 
removed from the straight-line fit, although we have not given 
much consideration to either of these points with the straight- 
line fit. For this fit, •ct = 58 m 2 and 0f = 4« ø. Again with the 
Lake Bonneville shoreline •c, we estimate the age of these 
scarps to be 53 ka. The intercept value, however, is about a 
factor of 2 higher than the center of the fan slope distribution 
(inset), which suggests that the straight-line fit, as good as it is, 
should not be taken too literally. The finite slope, initial value 
scarp model (21) will not help us here, since there is very little 
curvature in (21) at large •ct and small 2a (Figure 12). An 
alternate interpretation, one hard to explore with the limited 
data, is that •ct is somewhat smaller than 58 m 2 for the smaller 
(2a •< 5 m) scarps, so to intercept a smaller 0f, and that •ct is 
somewhat larger than 58 m 2 for the larger (2a •> 6 m) scarps. 
Such adjustments need only be minor and would change the 
age estimate hardly at all. The principal argument for this 
possibility is that we are otherwise left with an 11.5-m offset 
occurring in a single event, faulting displacements ordinarily 
associated only with great earthquakes. 
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Fig. 16. Slope-offset plot for the Oquirrh Mountains fault scarps. 
The dashed-line fit yields •ct = 35 m 2 and 0 s = 5 ø. The two points at 
2a = 3.1 and 3.2 m possess the largest 0 s in the data set (inset, as in 
Figures 11, 14, and 15). 
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Fig. !7. Slope-offset plot for the Sheeprock Mountains fault scarps. The dashed-line fit yields •ct = 58 m 2 and 0 s = 
•ø. The point at 2a = 7.6 m possesses the highest 0 s in the data set (inset, as in Figures !!, 14, 15, and 16). A two-event 
analysis (not shown), in which the smaller scarps (2a • 5 m) were slightly younger and the larger scarps (2a • 5 m) were 
slightly older would (1) decrease the intercept value to a more reasonable 0 s and (2) eliminate the conclusion that a 11.5-m 
offset occurred in a single earthquake (see text). 

DISCUSSION 

This study has focussed more intensively on analytical 
equations, data representations, and interpretive problems 
than it has on specific results for the geologic structures con- 
sidered herein. We have done so intentionally, in part because 
of the presently tentative nature of how this sort of landform 
analysis should proceed and in part because of the real advan- 
tages and disadvantages of the two data representations and 
their associated mathematical forms. In fact, the princi. pal con- 
clusions of this investigation, recounted in the next and final 
section, are related to these matters alone. 

One purpose of this section, then, is to bring the individual 
numerical results, whether they be •c estimates or age determi- 
nations, together in a common context and, in the case of the 
Drum Mountains fault scarps, to compare them to the results 
of Nash [1980b]. It is Worth reemphasizing the preliminary 
nature of the numerical results summarized below. The 

various geologic features we have examined have been con- 
sidered largely in the context of illustrating a particular ana- 
lytical form or a particular data representation (or both); each 
of these geologic features can and should be the subject of 
more thorough in•,estigation, both observationally and ana- 
lytically. Our numerical results for the Santa Cruz sea cliffs 
and the RaymOnd fault, for example, are particularly tentative, 
based as they are on single profiles. At the end of this section 
we bring together several observaffons concerning the use and 
misuse of slope-offset plots. 

The •ct Determinations • 
, 

Table 2 summarizes the •ct determinations of this investi- 

gation and the determination of •/A for the Raymond fault; 
these determinations have been broken into separate entries 
for •c (GKG) and t (age in ka B.P.) or 2,4 (m/ka). The italicized 
quantities have been assumed known, thereby fixing the other 
quantity in any row. In addition, Table 2 includes two entries 
from the work of Nash [1980a] and one based on an observa- 
tion of M. N. Machette (personal communication, 1982), that 
approximately meter-high, ,-, 100 ka B.P. scarps are rare to 
nonexistent in alluvial terranes of the Basin and Range Prov- 
ince and of the Rio Grande Rift Valley fi.s well. 

In the case of the Santa Cruz sea cliffs, the inferred ages of 
sea cliffs A, B, and C have been used to determine a •c for 
each; more precisely, we simply used the same •c for each 

model fit and found that this worked. Of the three ages, that 
for sea cliff A is by far the best determined. It does not seem at 
all likely that sea cliff A can be less than 83 ka B.P. nor more 
than 125 ka B.P. The ages of sea cliffs B and C are only as 
good as the assumption of a uniform uplift rate for the past 
400 ka. To return sensibily constant •c, however, it is only 
really necessary that sea cliff B be in the range of 200-300 ka 
B.P. and sea cliff C be in the range of 300-400 ka B.P. 

With these "relaxed" ages the two significant figures for •c 
are misleading; more appropriately, they all may be con- 
sidered as 10 GKG, but the important issue is that •c is ap- 
proximately the same for these three structures, that is, over 
the past 400,000 years. Evidently, the known climatic vari- 
ations in the recent past with periods of tens of thousands of 
years average out on time scales of a hundred or so thousand 
years. 

Surprisingly, the •c estimate for the fan material cut by the 
Raymond fault is very much the same, 16 GKG, as for the 
Santa Cruz sea cliffs and represents a similar time span, 230 
ka. Provided that both •of these single-profile estimates are 
sustained by further investigations, we suspect that the higher 
rainfall in the Santa Cruz area is offsetting, at least in part, the 
more competent nature of the Santa Cruz Mudstone, in com- 
parison with the precipitatio n and fan material in the vicinity 
of the Raymond fault. 

By a factor of 15, the Lake Bonneville shoreline •c (1.1 
GKG) is lower than that for the Raymond fault, although 
both structures are cut in weakly consolidated fan material. 
This difference must be mostly if not entirely due to climatic 
differences, presumably rainfall. 

In addition to these three estimates of •c, Table 2 also in- 
cludes tWO from Nash [1980a], who determined •c = 12 GKG 
from profile modeling of two sets of wave-cut bluffs in Emmet 
County, Michigan, one cut by glacial Lake Algonquin 730 ft 
(223 m) above sea level (abandoned 10.5 ka B.P.) and the 
other cut by Nipissing Great Lakes at 620 ft (189 m) above sea 
!evel (abandonned 4 ka B.P.). Both sets of bluffs are cut in 
predominantly sandy debris of glacial origin. This value of •c is 
similar to those determined here for the Santa Cruz sea cliffs 

and the Raymond fault, surprisingly so since the Emmet 
County value represents both unconsolidated material and a. 
high l•evel of precipitation. Vegetation cover, then, may be yet 
another variable for •c, 
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TABLE 2. Summary of Numerical Results 

Geologic Structure 
•ct, •c/A, •c, t, 2A, 
m 2 m GKG ka B.P. m/ka 

Santa Cruz sea cliffs 
A 

B 

C 

Raymond fault 
Lake Bonneville shoreline 

Drum Mountains fault scarpsi' 
• =0.5 
cx =0.6 

Fish Springs Range fault scarps 
Oquirrh Mountains fault scarps 
Sheeprock Mountains fault scarps 
Emmet County, Michigan, wave-cut bluffs 

Lake Algonquin 
Nipissing Great Lakes 

Machette constraint 

1200 

2500 

4100 

16 

11 105 

11 230 

11 370 

240 16 (230)* 0.13 
1.1 14-15 

4 1.1 3.6 
6.25 1.1 5.7 
6 1.1 5.6 
3.3 1.1 3 

35 1.1 32 
58 1.1 53 

126 12 10.5 
48 12 4 

> lOO > 1.o lOO.• 

Italicized values are assumed known. 

*Age estimate from 2At = 100 fi = 30 m divided by 2A = 0.13 m/ka. 
•'The last entry for these scarps Oct = 6 m 2) is the average of the •t values determined from profile 

modeling and the slope-offset plot of the smaller (2a • 4 m) scarps alone. 
$The "unobservable" (a = 1 m)scarp of age 100,000 years' O s < 3 ø + 0 s. 

Finally, the Machette constraint can be written in terms of 
the minimum observable scarp slope, which we take to be 3 ø 
above the fan slope on which such a scarp might be placed. 
Then 

or, for small 0 s, 

a 

tan (3 ø + (3bs) > (7rtct)•/2 i- b (23a) 

a 

0.052 > (rctct)•/• (23b) 
That is, a 2-m-high scarp (a- 1 m) will be "observable," that 
is, have 0s > 3 ø + 0 s, after 100,000 years only if tc < 1.2 GKG. 
That such scarps are not "observable" implies tc > 1.2 GKG. 
In Table 2 this entry is written as tc •> 1 GKG to reflect some 
uncertainty as to what is observable and what is not. The 
Lake Bonneville shoreline tc meets this constraint but just 
barely. Nevertheless, if our formulation of the Machette con- 
straint (equations (23)) is at all close, the coincidence between 
the Machette inequality and the Lake Bonneville shoreline tc 
suggests that tc •_ 1 GKG may be widely applicable to weakly 
consolidated alluvial terranes of the Basin and Range and Rio 
Grande Rift Valley, on time scales of both 14 and • 100 ka. 
Profiles of the Lake Lahontan shoreline scarps in western 
Nevada recently acquired by two of us (T.C.H. and R.E.W.) 
suggest this is indeed the case; when normalized for variable 
2a and b, these profiles are indistinguishable from the Lake 
Bonneville shoreline scarps. 

Table 2 also includes the four sets of fault scarps dated in 
this study on the basis of the Lake Bonneville shoreline to. The 
Drum Mountains fault scarps have given us the most prob- 
lems. The best model fit Oct = 4 m 2, 0• = 0.5, Figure 14) is the 
hardest for us to accept, in part because of the resulting young 
age (3.6 ka) and in part because of the low initial scarp angles 
(26ø). We prefer the age estimate of 5.6 ka based on the smaller 
scarps alone Oct = 6 m2), even if this leaves us uncertain about 
the true significance of the larger scarps (2a •> 4 m). Consistent 
with their fresh-looking appearance, the Fish Springs Range 

fault scarps are very young; we estimate their age to be 3 ka. 
The age of the Oquirrh Mountains fault scarps, while more 
uncertain than the 32 ka entered in Table 2 because of the 

observations themselves (Figure 16), meets the weak con- 
straint that these scarps are older than the Lake Bonneville 
shoreline. The Sheeprock Mountains fault scarps are even 
older, 53 ka. They are remarkably well grouped with respect 
to a straight-line fit, but our inability to recover the average 0 s 
(by a factor 2) suggests that this appearance may be illusory. 
Our age estimate would not be much affected, however, by a 
two-event analysis that would better match the intercept 
value. 

Nash [1980b] has also analyzed the Drum Mountains fault 
scarps data, as presented in the scarp slope angle/scarp height 
representation of Bucknam and Anderson [1979]. Assuming 
that all faults were formed 10,000 years ago on faults dipping 
at 25 ø, Nash [1980b] determines that tc = 4.4 x 10 -'• m2/yr. 
The calculations were performed numerically, but his estimate 
of tot = 4.4 m 2 (given • = 0.47) is remarkably close to the 
tot- 4 m 2, •--0.5 model in Figure 14. Nash [1980b] then 
reversed what we have done here, namely determining tc from 
an assumed age. Both in Nash's [1980b] study and this one, 
however, the problem is to rationalize • = 0.5. Typical values 
of normal fault dips in the Basin and Range are in the neigh- 
borhood of 60ø; a single trench exposure of one Drum Moun- 
tains fault scarp reveals a fault dip of 76 ø [Crone, 1983]. Initial 
scarp angles of 25 ø are even significantly less than 0, •_ 35 ø. A 
consequence, then, of both these •ct _• 4 m 2, • •_ 0.5 models is 
that, in the absence of nonlinear modification processes, the 
larger scarps are essentially unchanged from the day they were 
"formed," since the calculations yield scarp slopes at 2a > 4 m 
only incrementally changed from the initial value of 25 ø or 26 ø 
[Nash, 1980b, Figure 3] (Figure 14 of this study). 

The Slope-Offset Plots 

Consistent with the diffusion equation analysis that is the 
basis of this study, we have restructured the scarp slope an- 
gle/scarp height diagram of Bucknam and Anderson [1979] 
into the slope-offset plots used extensively in this study. With- 
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out losing any of the observational advantages of the scarp 
slope angle/scarp height diagrams to accommodate large sets 
of point pairs, the slope-offset representation permits quantita- 
tive analysis to be performed directly in the data space. It 
moreover makes use of the intercept value b at 2a = 0' any 
model fit, diffusion equation mathematics or otherwise, must 
meet this constraint which comes essentially for free. Indeed, 
failure to meet this constraint can be taken as almost a sure 

sign of real or impending difficulties. Finally, the slope-offset 
plots allow for the systematic effects of variable b. While vari- 
able far-field slopes are hardly responsible for all of the scatter 
in slope-offset plots, they are surely contributing some of it 
(Figures 13-17). 

Relative to profile modeling, slope-offset analysis also has 
several advantages. Profile modeling is not only time and 
space consuming, but the appropriate mathematical forms are 
more cumbersome to use. Nevertheless, modeling of even a 
few profiles can illuminate a •ct- 2a dependence that other- 

plot. Moreover, profile modeling permits an assessment of 
model fit to data in the cross-strike direction (where the effects 
of multiple scarps may be found, for example) that the slope- 
offset representation does not see. As such, slope-offset analy- 
sis should not, in general, stand apart from modeling of at 
least a few profiles that span the range of 2a. 

SUMMARY AND CONCLUSIONS 

The principal purpose of this study has been to apply ana- 
lytical equations, within the restrictions of the diffusion equa- 
tion model, to real observations of wave-cut and faulting- 
controlled landforms, as these landforms have been modified 
across arbitrary and generally unknown periods of time. In 
broad outline, its principal conclusion is that this diffusion 
equation representation, even in its most elementary model 
solutions, makes sense, within limits, for the wide class of 
observations considered here (1 •< 2a •< 50 m, 3 •< age •< 400 
ka B.P.). 

Numerically, the results of this study are summarized in 
Table 2, as qualified by the caveats of the preceding discussion 
section. In broader terms, we see the following as the principal 
conclusions of this study. Model solutions of the most ele- 
mentary type to the diffusion equation can reproduce the 
actual topography of scarplike landforms with remarkable ac- 
curacy. There seems little doubt, then, that diffusionlike pro- 
cesses contribute significantly to the modification of nondis- 
secting alluvial terranes, even if the constant coefficient, hom- 
ogenous diffusion equation does not incorporate each and 
every one of them. Significantly, most although not all of the 
observations that could be interpreted as evidence for nonlin- 
ear modification processes, namely, the •ct- 2a dependences 
for the Lake Bonneville shoreline and Drum Mountains fault 

scarps, are as easily attributed to the effect of finite slope, 
initial value scarps. The price of this interpretation comes in 
the form of the two unanswered questions of this study, both 
associated with the Drum Mountains fault scarps: why are 
these fault scarps the only set of four to show evidence for 
bounding scarp angles and why are these bounding scarp 
angles so small? The most intriguing result of this study is the 
coincidence between the Lake Bonneville shoreline •c (1.1 
GKG) and the •c (•> 1 GKG) derived from the Machette con- 
straint. If this coincidence is physically significaet, it means 
that the Lake Bonneville shoreline •c is widely applicable to 
unconsolidated alluvial terranes throughout the Basin and 

Range and Rio Grande Rift Valley, on time scales of 10-100 
ka. In any event we have used this •c to date four sets of fault 
scarps in west-central Utah. The age estimates meet available 
geological constraints, although we are yet uncertain about 
the true significance and age of the 2a •> 4 m Drum Moun- 
tains fault scarps. 

All of this is sufficient to suggest, at least to us, that the 
diffusion equation representation, when used within sensible 
limits, holds considerable promise as an analytical model of 
the evolution of wave-cut and faulting-controlled landforms in 
terranes degradable on time scales of hundreds of thousands 
of years or less. Practically speaking, this approach seems very 
promising as a means of dating fault scarps of unknown age 
with observations that are extraordinarily easy to come by. 
Age estimates, however, will only be as accurate as the •c 
borrowed from some other structure of known age. Extracting 
this •c in the first place is not without nuance and uncertainty' 
transferring it to another area and structure involves entirely 
different uncertainties, of which not much is known. If re- 
search such as this is to progress much further, then, it will be 
through a collection of well-defined •c estimates, so we may 
more clearly understand how •c varies as a function of materi- 
al, climate, vegetative cover, and, of course, time. 
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