






fluctuations under steady forcing is evident for both systems
(Figure 2). Here we define the magnitude of fluctuations, q′,
as the root mean square deviation of q over a given time t.
Power spectra of q(t) reveal the same general pattern for
both systems. At short timescales there is a non‐stationary
regime in which spectral density increases as a power‐law
function of period (Figure 2). Physically this means that
larger‐scale fluctuations have larger characteristic time-
scales, and also suggests that fluctuations are correlated
across a wide range of timescales. Fluctuations cannot
increase without bound, however; system size (L) and the
input rate of sediment (q0) set an upper limit on the mag-
nitude of q′. The characteristic timescale (Tx) associated

with saturation of q′ is a classic finite‐size effect [Hwa and
Kardar, 1992], which is expected to scale as

Tx � L2=q0: ð1Þ

At longer times spectra show a white‐noise regime, which
indicates that q(t) is stationary and q′ is uncorrelated at
timescales t > Tx. The similarity in transport dynamics from
these two very different systems suggests that the structure of
the power spectra is a generic result of nonlinear transport.
[5] To test this hypothesis and the generality of equation (1)

we examine the one‐dimensional numerical rice pile model
of Frette [1993]. Despite its simplicity, the model repro-
duces the generic behavior of the rice pile and bed‐load
experiments (Figure 3), and is consistent with dynamics
from more complex models of landscape evolution [Van De
Wiel and Coulthard, 2010]. This is because sediment
transport fluctuations in both the experiments and the model
result from a common mechanism: storage of sediment
within the transport system, exceedance of some critical
failure threshold, and release of sediment during relaxation
following failure. Tx for the rice pile model is well predicted
by equation (1) (Figure S1). The timescale of the largest
avalanche is dictated by the time it takes to build a wedge of
sediment to the critical angle. Jerolmack and Paola [2007]
found the same behavior in a two‐dimensional river delta
model that simulated river channel creation and abandon-
ment due to the threshold process of avulsion. For this
system, Tx represented the time required for the entire
channel to deposit to the critical threshold height for avul-
sion. The time scale condition t > Tx is a necessary (though
not sufficient) condition for sediment transport and deposi-
tion to reach steady state.

3. Modulated Turbulence and Signal Shredding

[6] Transport fluctuations seen in models and experiments
(Figures 2 and 3) are reminiscent of fluid velocity fluctua-
tions in turbulent flows. Velocity fluctuations (u′) in the
inertial regime increase as a power law function of the eddy
turnover timescale (t) [Frisch and Kolmogorov, 1995]. The
maximum eddy size is determined by flow depth (L), which –
by Taylor’s hypothesis – causes a peak in u′ at the maximum
eddy turnover timescale, Tx ∼ L/u0 (where u0 is the average
fluid velocity), in a manner exactly analogous to equation (1).
In studies of modulated turbulence, the response of u′ to
periodic forcing of input energy has been found to be prin-
cipally frequency dependent [Binder et al., 1995]. For periods
T > Tx, flow is quasi‐steady and responds instantaneously to
the gradually‐varying boundary conditions. For periods T <
Tx the input energy is greatly modified by turbulence; in the
limit T � Tx, variations in input energy have little influence
on the statistics of the flow field [Binder et al., 1995; Cadot
et al., 2003; von der Heydt et al., 2003]. Turbulent velocity
fluctuations thus behave as a nonlinear, frequency‐dependent
filter that destroys input signals having a period smaller than
that of the largest eddies.
[7] It has long been recognized that the response of

landscapes to variations in environmental forcing is also
frequency dependent, because sediment transport imparts an
inherent response time [Paola et al., 1992; Castelltort and
Van Den Driessche, 2003; Swenson, 2005; Allen, 2008].
But in general, it has been assumed that the filtering of the

Figure 1. Deposition and landscape patterns may reflect
external forcing or autogenic sediment transport dynamics.
(a) Glacial varves (lake deposits) from Champlain Valley,
NewYork. Scale bar markings are 1 cm. (Credit: Tufts Univer-
sity, North American Glacial Varve Project.). (b) Eroded river
terraces. Scale Unknown. (Credit: http://www.coolgeography.
co.uk/A‐level/AQA/Year%2012/Rivers,%20Floods/Rejuvenation/
Rejuvenation.htm.). (c) Ancient river deposits from the Book
Cliffs, Utah. (d) Sequences of cyclic sedimentary rock layers
exposed in Arabia Terra, Mars [Lewis et al., 2008]. (Credit:
Topography: Caltech; HiRISE Images: NASA/JPL/Univ. of
Arizona.). (e) Deposits from eXperimental EarthScape Facility
(run XES02) of a laboratory river delta (inset) with signatures
of both autogenic dynamics and externally‐forced sea level
cycles. Arrow indicates flow direction. Inset shows plan view
of delta; sediment was input at left edge, dotted line indicates
stratigraphic dip section shown, shoreline of the delta is
outlined.
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input signal is linear in character, i.e. that while the signal
may be damped, phase‐shifted, and/or masked by noise, it is
still present and in principle recoverable with the right kind
of inverse filtering. Modulated turbulence, however, is an
example of nonlinear filtering in which this is not the case.
Previous workers have suggested analogies between land-
scape dynamics and turbulence [Paola, 1996; Paola and
Foufoula‐Georgiou, 2001]. The generic scaling of “mor-
phodynamic turbulence” in the models and experiments
presented here, and its similarity to the scaling of fluid
turbulence, suggests (Figures 2 and 3) at least two different
time‐dependent regimes. In the nonstationary regime (t < Tx),
spectra indicate correlations in transport fluctuations across
a wide range of scales. Energy injected at one scale should
smear across many scales, so environmental signals with a
period T < Tx are expected to be strongly modified as they
propagate through the system. In the white noise (uncorre-
lated) regime (t > Tx) a perturbation should pass unimpeded
(though with added noise), because the output signal is
essentially a linear convolution of the input signal with a
white noise. We explore this frequency dependence in the
numerical rice pile model by imposing an environmental
perturbation in the form of cyclically varying sediment
supply (q0), and analyzing q(t) from the model outlet
(Figure 4). For cycle period T > Tx, periodicity of the input
signal is recorded in the output flux; sediment transport is
quasi‐steady and responds directly to the time‐varying
boundary condition. For T < Tx, the amplitude of the input
signal decays rapidly with decreasing T over a narrow range,
analogous to modulated turbulence [von der Heydt et al.,
2003]; for T/Tx ≤ ∼0.6, there is no evidence of periodicity
in the output flux meaning that transport fluctuations oblit-
erate the time‐varying input signal (Figure S1). We con-

firmed that frequency‐dependent signal shredding also
occurred in the delta [Jerolmack and Paola, 2007] model.
[8] Signal amplitude must somehow play a role as well. In

particular, a sufficiently large‐amplitude input signal must
be able to overwhelm the autogenic dynamics and pass
through the transport system regardless of its time scale.
Models suggest a clear upper magnitude limit to possible
autogenic signals, associated with a single failure that
extends over the whole length of the system. We term these
events “system‐clearing” events; for example a landslide or
channel avulsion involving threshold exceedance over the
whole system length. The magnitude M of the system‐
clearing event is set by the system size and threshold con-

Figure 2. Experimental sediment transport data. (top, left) Bed load river transport [Singh et al., 2009], where flow is from
top to bottom. (right) Rice pile, where sediment is fed at a constant rate to the top of the pile while efflux is measured using
an electronic balance. (middle) Instantaneous sediment transport rates, q, and (bottom) resultant (ensemble‐averaged) power
spectra. Tx is the empirically‐determined saturation timescale.

Figure 3. Numerical results for the rice‐pile model, as in
Figure 2. q0 corresponds to the constant input rate of
sediment.
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dition; for example, in a 1D model with a threshold failure
slope Sc, the limiting magnitude Mmax ∼ L2 Sc. Figure 4
shows that an input signal with T < Tx but M > Mmax is
indeed passed through the transport system in the numerical
rice pile model.

4. Challenges and Opportunities

[9] Most landscape evolution models predict that the
equilibrium timescale (Tx) is an advection [Whipple and
Tucker, 1999] or diffusion [e.g., Paola et al., 1992] time-
scale, and that environmental signals with period T < Tx are
simply damped and lagged as they propagate through a
transport system. We suggest that Tx is analogous to the
maximum eddy turnover time that results from “morpho-
dynamic turbulence”. Signals with T < Tx will be obliterated
unless they are sufficiently large to overwhelm the auto-
genic fluctuations, i.e. M > Mmax. Thus, the nonlinear
dynamics of sediment transport sets a hard lower limit on
the ability of stochastic transport systems to pass and record
physical environmental signals. For a typical river delta
system, for example, observed avulsion frequencies suggest
that Tx could be several thousand years for large deltas such
as the Mississippi [Tornqvist et al., 1996]. Indeed, the
stratigraphic record of continental shelf deposits indicates
non‐steadiness for timescales up to ∼104 yr [Jerolmack and
Sadler, 2007], while recent experimental results imply
autogenic time scales that could be substantially longer than

those associated even with major avulsions [Kim and Paola,
2007]. We estimate Mmax to be on the order of Lh [Reitz
et al., 2010] for a river of depth h; i.e. about 5 km2 for a
Mississippi‐scale river with a system length of 500 km and a
depth of 10 m. It seems unlikely that a short‐term external
signal would exceed this threshold.
[10] Despite similar scaling, it is unlikely that morpho-

dynamic turbulence is a dissipative effect like the turbulent
energy cascade of a fluid. A hallmark of avalanching‐type
models is that damage propagates from small to large scales,
such that the introduction of a single grain may cause a
system‐clearing event [Bak et al., 1987; Hwa and Kardar,
1992]; hence, if anything, the cascade may be reversed. In
addition, modulated turbulence studies have demonstrated a
resonance behavior such that for perturbations with T = Tx,
the magnitude of the signal is actually amplified [Binder
et al., 1995; Cadot et al., 2003]. There are hints of this
behavior in the numerical rice pile model (Figure S1), but
the effect, if present, is not strong. Carefully controlled
experiments, analogous to those of modulated turbulence
[Cadot et al., 2003], are needed to validate numerical
models of signal shredding in sedimentary systems and
determine its mechanistic basis. One way to maximize the
preservation of externally applied signals is to eliminate
nonlinearity. In a fluid, laminar flow minimizes the advec-
tive nonlinearity of transport such that mixing is signifi-
cantly reduced. Quiescent sedimentary environments, such
as deep‐sea basins or small lakes that have minimal potential
for stick‐slip transport processes, may be the morphody-
namic equivalent of laminar flows. These examples show
how Tx and Mmax provide a new tool for assessing landscape
response to environmental perturbations and a motivation
for better understanding of the mechanisms and length, time,
and amplitude scales of autogenic dynamics.
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