DR2012041

Figure DR-1. Correlations amoung various topographic and geophysical parameters along the Colorado River profile (see next page for explanation)

Figure DR-1. Graphs of geophysical and geomorphic variations from maps of Figure 1 drawn parallel to the Colorado and Green River profiles. Variations in topographic parameters correspond to changes in lithospheric substrate for the Green and Colorado River systems. Note that Segment 1 (gray) is below Grand Canyon, Segment 2 (red) is Grand Canyon, Segment 3 (Yellow) is the Colorado Plateau reach of the Colorado River, Segment 4 (blue) is the Rocky Mountain reach of the Colorado River, and Segment 5 (green) is the Green River above the confluence. This expands on the treatment in Figure 2. The river profile shown in Figure DR1 was derived from a 90 m DEM, and hence has more artifacts than the profile shown in Figure 2. The central Colorado Plateau (Segment 3) and Green River (Segment 5) have higher mantle velocities and lower river gradients than the adjacent Grand Canyon reach (Segment 2) and Colorado Rockies reach (Segment 4). These changes are mimicked by lower roughness (Fig. DR1A), crustal attenuation (Fig. DR1E), and geoid anomaly (Fig. DR1F) of the Colorado Plateau reach relative to adjacent upstream and downstream reaches. Crustal thickness beneath the river is highly variable as it crosses the White River and Breckenridge deep Moho areas in the Rockies, but the river profile does not reflect these crustal thickness variations. Overall, the information illustrated in figure DR1 is most consistent with the hypothesis that steeper river gradients and higher topographic roughness are a surface response to mantle forcing and resulting surface uplift in regions underlain by low velocity mantle.

TABLE DR 1. SUMMARY OF COLORADO PLATEAU INCISON RATES								
Name	River	Strath Height (m)	Age (Ma) [§]	Dating Technique	Incision Rate (m/Ma)	Reference(s)	Latitude*	Longitude* Notes
Pinedale, WY	Green	34	0.639 ± 0.002	Tephrachronology	52	Izett and Wilcox, 1982	42.8959	-110.0740 Lava Creek B ash locality
Peru Bench, WY	Green	120	1.2 ± 0.3	Cosmogenic burial isochron	100	Darling et al., in review	41.5867	-109.5801
Jesse Ewing Canyon, CO	Green	49	11.8 ± 0.4	K-Ar	4	Damon in Winkler, 1970; Izett, 1975;	40.9125	-109.1608
						Luft, 1985		Volcanic ash in upper Browns Park Fm
Goodman Gulch, CO	Green	52	8.25 ± 0.7	Fission Track	6	Luft, 1985	40.8268	-108.9061 Volcanic ash in upper Browns Park Fm
Vermillion Creek, CO	Green	140	9.1 ± 1	Fission Track	15	lzett, 1975	40.7271	-108.7609 Volcanic ash in upper Browns Park Fm
Tabyago Canyon, UT	Green	60	1.48 ± 0.02	Cosmogenic burial isochron	41	Darling et al., in review	39.7676	-109.9050 Near Desolation Canyon kickpoint
McCoy, CO	Colorado	79	0.639 ± 0.002	Tephrachronology	124	Larson, et al., 1975; Aslan et al., 2007	39.9280	-106.7146 Lava Creek B ash locality
Dotsero, CO	Colorado	85	0.639 ± 0.002	Tephrachronology	133	Brown et al., 2007	39.6460	-107.0584 Lava Creek B ash locality
Grand Mesa, CO	Colorado	1503	10.76 ± 0.24	Ar/Ar	140	Kunk et al. 2002; Czapla & Aslan, 2009	39.0464	-108.2514 Basal basalt flow north of Lands End underlain by Colorado R gravels; age is from oldest (basal) flow dated by Kunk et al., 2002 at Lands End
Praire Canyon / McDonald Creek, CO	Colorado	105	0.639 ± 0.002	Tephrachronology	164	Aslan et al., 2010	39.1373	-109.0274 Ash occurs beneath local river gravels that project down McDonald Ck to Colorado R over a distance of ~15 miles
Bull Frog Marine, UT	Colorado	189	1.5 ± 0.13	Cosmogenic burial isochron	126	Darling et al., in review	37.5189	-110.6995
Eastern Grand Canyon, AZ	Colorado	0-920	0.153 to 3.72	Ar/Ar, U-series, and U/Pb	233	Karlstrom et al., 2008	36.2000	-112.4000 Prefered average rate based on multiple dated straths including speleothem constrained ages of Polyak et al., 20008, location approximate based on multiple samples
Western Grand Canyon, AZ	Colorado	0-290	0.298 to 3.87	Ar/Ar and U/Pb	78	Karlstrom et al., 2008	35.8000	-113.4000 Prefered average rate based on multiple dated straths including speleothem constrained ages of Polyak et al., 20008, location approximate based on multiple samples
Panda Gravels near Davis Dam, NV	Colorado	43	5.5	Tephrachronology	8	House et al., 2005; Karlstrom et al.,	35.1397	-114.5784 Actual Panda Gravel strath may be lower
Florida Mesa, CO	Animas	123.5	0.639 ± 0.002	Tephrachronology	193	Gilliam, personal communication	37.2732	-107.8029 Lava Creek B ash, average of 190-195 m/Ma
Flora Vista, NM	Animas	83	0.639 ± 0.002	Tephrachronology	130	Gilliam, personal communication	36.7709	-108.1213 Lava Creek B ash
Bluff Quarry, UT	San Juan	140	1.36 +0.15 / · 0.2	· Cosmogenic burial	102	Wolkowinsky and Granger, 2004	37.2926	-109.5454 Strath covered by <10m of gravel. Rate of 110 m/Ma is from the terrace tread.
Sawmill Mesa, CO	Gunnison	96	0.639 ± 0.002	Tephrachronology	150	Darling et al., 2009	38.7239	-108.1783 Lava Creek B ash locality near Kelso Gulch
§ Error reported as in original publication	on (may be a	mix of 1 and 2 sigma	errors)					

* Estimated from description if exact location was not given, using NAD83 datum

Figure DR-2. Topographic image of the Colorado Plateau (CP), Southern Rocky Mountains (SRM), and Basin and Range (B&R) showing control points used to define the 10 Ma paleo-surface (see Table DR1). Black dots are 8-12 Ma basalt flows, white dots are thermochronometry data points and other elevation constraints for the inferred paleo-surface. These additional control points aid in reducing artifacts in the triangular interpolation algorithm. Other points of interest are CAN = Canyonlands region, CM = Chuska Mountains, CR = Colorado River, KU= Kaibab Uplift and eastern Grand Canyon regionTP, GM = Grand Mesa, GR = Green River, LF = Lees Ferry, TP = Tavaputs Plateau, UM = Uinta Mountains, UC = Unaweep Canyon of Uncompandire Uplift.

Location*	Description							
1	2-3 km of section eroded from Canyonlands near confluence of Green and Colorado rivers since 4-6 Ma (Hoffman et al., 2010)							
2	~2 km of section removed from Book Cliffs region since 4-6 Ma (Hoffman et al., 2010)							
3	Colorado River gravels are preserved under 10 Ma basalt flows on Grand Mesa (Aslan et al., 2010)							
4	The Colorado River flowed over the Uncompahgre Uplift prior to carving Unaweep Canyon (Aslan et al.,2010)							
5 and 6	10 Ma basalts constrain elevations in the southern Rocky Mountains, and Colorado River gravels docut the course of the river 10 Ma							
7	Profiles through the eroded piedmont east of the Rockies were used to define the present elevation of erosional remnants of the Miocene-Pliocene Ogallala Group with post-depositional tilt (McMillan et al. 2002; Leonard, 2002)							
8	~2 km of volcanic edifice eroded from the Needle Mts. and Mt. Sneffels since 10 Ma (Kelley et al., 2010)							
9	Basins along the Rio Grande rift formed prior to 10 Ma							
10	1-2 km of section eroded from the Monument Uplift since 6 Ma (Hoffman et al., 2010)							
11	Basin of present Little Colorado River was occupied by Hopi Lake from 16-6 Ma and formed by 1230 m incision into the Chuska Erg between 28-16 Ma (Cather et al., 2009)							
12	Southern rim of the Colorado Plateau has been armored by volcanic fields since Oligocene.							
13	Control points define elevations in the Basin and Range taht developed prior to 10 Ma.							
14	Between 20-10 Ma most Mesozoic section was removed and a paleo-canyon incised through the Ka coincident with the present eastern Grand Canyon (Lee et al., 2010)							
15	Control points define the position of a 2 km escarpment of the Mesozoic section just north of present Grand Canyon 10 Ma (Lee et al., 2010)							
16	Mesozoic section was 2 km thick over Lees Ferry 10 Ma (Lee et al., 2010) Elevation of the western rim of the Colorado Plateau is preserved under 10 Ma basalt flows. Some							
17	faulting has occurred along the margin of the Basin and Range making these minimum elevation es							
18	Elevations of the basins in the Northern Basin and Range formed prior to 10 Ma.							