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INTRODUCTION
After over a century of controversy there is a 

growing consensus that the Grand Canyon has 
formed in the past 6 Ma (Young and Spamer, 
2001). In this consensus, the term Grand Canyon 
is used for the canyon system carved by a west-
fl owing Colorado River, not for local precursor 
canyons (Young, 2008), or for northeast-fl owing 
Tertiary drainages that may have existed in the 
now-eroded Mesozoic strata (Flowers et al., 
2008). This paper formulates an incision model 
that integrates tectonic infl uences and driving 
forces such as Neogene faulting (Pederson et al., 
2002; Karlstrom et al., 2007), mantle to surface 
fl uid interconnections (Crossey et al., 2006), and 
mantle-driven dynamic uplift of the western edge 
of the Colorado Plateau (Ni et al., 2007).

Evidence for inception of carving of the Grand 
Canyon after 6 Ma is strong. (1) The sedimentary 
record shows that there are no Colorado River 
sediments in the 13–6 Ma Muddy Creek Forma-
tion that now blankets the Grand Wash trough 
at the mouth of the Grand Canyon (Lucchitta, 
1972; Faulds et al., 2001). (2) The fi rst sedi-
ments containing distinctive sand composition 
and detrital zircons that can be traced to Rocky 
Mountain sources reached the newly opened 
Gulf of California at 5.3 Ma (Dorsey et al., 2007; 
Kimbrough et al., 2007). (3) Gravels on top of 
the 6 Ma Hualapai Limestone and beneath the 
4.4 Ma Sandy Point basalt show that the river 
became established in its present course between 
6 and 4.4 Ma (Howard and Bohannan, 2001).

A recent challenge to the 6 Ma “young canyon” 
model is based on U-Pb dates from speleothems, 
one of which is interpreted to indicate that the 

Grand Canyon is older than 17 Ma (Polyak et al., 
2008). First, we demonstrate that available geo-
logic and geochronologic data overwhelmingly 
support the young canyon model. Second, we 
propose an incision model involving steady inci-
sion from 3–4 Ma to the Quaternary that incor-
porates neotectonic infl uences and explains U-Pb 
dates on speleothems (Polyak et al., 2008).

WATER-TABLE CONSTRAINTS—
GRAND CANYON AS AN INCISED 
AQUIFER SYSTEM

The key assumption for interpreting U-Pb dates 
on speleothems is that “groundwater table decline 
rates are equivalent to incision rates” (Polyak 
et al., 2008, p. 1377). We test this assumption by 
analysis of the modern aquifer system. Recharge 
from the San Francisco Peaks fl ows north and 
discharges in the Grand Canyon, mainly in Blue 
and Havasu springs (Crossey et al., 2006). These 
springs are locations where the gently north 
sloping water table is breached by tributaries of 
the Colorado River (Fig. 1). Other springs are 
widely distributed (Fig. 2; Table DR1 in the GSA 
Data Repository1) and are associated with vari-
ous perched aquifer units. Instead of defi ning a 
single water table, the distribution of springs 
indicates that the walls of the Grand Canyon 
are a seepage face (Rulon et al., 1985) and that 
groundwater is hydrologically and geochemi-
cally distinct from the river. Only in one section 

of the eastern Grand Canyon (Fence Spring and 
Vasey’s Paradise) is the river currently incis-
ing through the confi ned Redwall-Muav aquifer 
and intersecting the water table. Elsewhere, the 
position of the Redwall-Muav equipotential sur-
face is controlled stratigraphically by the lower 
confi ning layer (Fig. 2; Bright Angel Shale) and 
by the relationships between aquifer recharge 
and discharge. Therefore, the assumption that 
“groundwater table decline rates are equivalent 
to incision rates” (Polyak et al., 2008, p. 1377) 
is falsifi ed by the modern hydrologic system. 
Never theless, speleo them dates could have inci-
sion rate signifi cance for locations (1) where the 
water table is not perched, and (2) for caves 
within the main river corridor (not up a side-
stream). Unless both 1 and 2 can be demonstrated, 
ages from cave mammilary coatings should be 
considered to give maximum incision rates.

TECTONIC INFLUENCES ON 
KARST WATERS, TRAVERTINES, 
AND SPELEOTHEMS

Mammilary calcite in caves was interpreted 
by Polyak et al. (2008) to be related to changes 
in water level during the time of transition 
from below to above the water table. However, 
this is not a unique interpretation and other 
processes need to be considered. Modern aqui-
fer waters are supersaturated with CO

2
 and con-

tain 3He/4He ratios indicating direct inputs from 
mantle fl uids (Crossey et al., 2006). Similar to 
travertine deposits at springs and sidestreams 
(e.g., Blue and Havasu springs), mammilaries 
form when high pCO

2
 groundwaters encounter 

lower pCO
2
, degas CO

2
, and precipitate calcite. 

In addition to water-table lowering, processes 
that can change groundwater fl ow path, water-
table elevation, and/or hydrogeochemistry and 
hence cause calcite growth in the roof of caves 
include cave breaching by cliff retreat, enhanced 
turbulent fl ow, mixing with low pCO

2
 surface 

water or air, and/or infl ux of CO
2
 during seismic 

events and/or climatic changes. Thus, given the 
complex geologic evolution of the region, inter-
preting the signifi cance of dates on mammilary 
calcite growths requires a better geologic con-
text than is currently available.

INCISION RATE DATA
A careful evaluation of all available inci-

sion rate data and their geologic context (Fig. 2; 
Table DR2) provides support for a younger than 
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6 Ma Grand Canyon. This treatment argues that 
the 17 Ma date on calcite from Grand Canyon 
caverns is not evidence for a 17 Ma Grand Can-
yon (Polyak et al., 2008). This cave is in the Red-
wall Limestone, 30 km south of the river (Fig. 1) 
in an area where the present water table is at an 
elevation of 410 m below the surface (Arizona 
Department of Water Resources, 2007) and hence 
only 150–250 m below the dated sample, and 
about 1 km above the modern river. The 17 Ma 
calcite may date a time of water-table drop, but 
there is nothing that relates such an event to 
Grand Canyon incision. Furthermore, 150–250 m 
of water-table lowering in 17 Ma would give an 
average rate of 10–15 m/Ma (not the 68 m/Ma 
reported). The 17 Ma age is interpreted here as 
due to initiation of large-magnitude Basin and 
Range extension in this region and associated 
changes in cave hydrology or hydrogeochemistry. 
Similarly, the next oldest U-Pb age (7.1 Ma; Site 1 
of Polyak et al., 2008) is at great distance north 
of the Grand Canyon (38.6 km) and cannot con-
fi dently be related to canyon incision (Pearthree 
et al., 2008).

The remaining U-Pb dates are from caves 
within the Grand Canyon and are all younger than 
4 Ma, consistent with models for a younger 
than 6 Ma Grand Canyon. The best measure of 
the internal consistency of the combined data is 
to plot height versus age for all proposed inci-
sion points (Fig. 3). Two caves (points 2 and 3) 
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in the western Grand Canyon are within the river 
corridor and may date the time of river incision 
through the Redwall-Muav karst system. If so, 
they yield incision rates of 75 and 55 m/Ma 
over 3.87 Ma and 2.17 Ma, respectively. When 
combined with Quaternary incision rates, line 
W1 (Fig. 3) suggests a long-term (4 Ma) steady 
incision rate of 78 m/Ma and an estimated depth 
to bedrock below the river surface of 25 m 
(Y intercept of Fig. 3), in general agreement 
with Quaternary rates (55 m/Ma; line W2 of 
Fig. 3) and drilling depths to bedrock beneath 
the river (15–28 m; Karlstrom et al., 2007).

Eastern Grand Canyon dates (points 5–10) are 
from caves high in the seepage face and 2–7 km 
away from the river corridor and therefore are 
less reliable as incision points. When combined 
with Quaternary rates, the complete data set 
suggests an overall steady average bedrock inci-
sion rate of 250 m/Ma, the rate needed to carve 
the deepest part of the eastern Grand Canyon 
(1.6 km) in ~6 Ma (line E2 of Fig. 3). Prob-
lematically, caves giving similar ages occur at 
different heights (samples 5 and 7) and caves of 
similar height give different ages (samples 5 and 
9), both of which negate the assumption of a strict 
incision rate signifi cance for the dates. However, 
because all rates are considered here as maxi-
mum rates, we select the samples that give the 
lowest rates (samples 6, 7, and 9; Table DR2), 
yielding an apparent incision rate of 233 m/Ma 
relative to the mainstem over 3.72 Ma (line E3 of 
Fig. 3). We interpret samples 5, 8 (both surface 
features), and 10 to record carbonate precipita-
tion events that took place high in the landscape 
due to hydrologic or geochemical changes. An 
analog for breaching of caves at multiple eleva-
tions in today’s hydrologic system would be 
Roaring (highest), Havasu, and Blue Springs 
(Fig. 2). Thus, Figure 3 suggests steady rates for 
the past 4 Ma rather than “accelerated headward 

erosion in the eastern Grand Canyon” (Polyak 
et al., 2008, p. 1379). Within tectonic blocks, we 
see no systematic west to east changes in inci-
sion ages or incision rates (Fig. 2) as would be 
predicted in a headward erosion model.

Instead, steady incision and the difference in 
eastern-versus-western Grand Canyon incision 
rates (inset to Fig. 3) are well explained by the 
fault-dampened incision model (Pederson et al., 
2002), acting over 6 Ma (Karlstrom et al., 2007), 
and reusing preexisting Tertiary paleocanyons 
in the western Grand Canyon (Young, 2008). 
Our sequential model (Fig. 4, and the incision 
ani mation in the Data Repository) explains key 
assumptions and makes numerous predictions 
that can be tested in future research. At 6 Ma, 
Lake Bidahochi became integrated through paleo-
channels in the western Grand Canyon (Young, 
2008) to the top of the Hualapai Limestone. East-
ern and western Grand Canyon fault blocks are 
restored to their 6 Ma position by pinning the Lake 
Mead block at its current elevation; movement on 
the Wheeler fault initiates differential incision. At 
4–3 Ma, slip on the Wheeler fault waned and slip 
on the Hurricane-Toroweap system increased, 
initiating differential incision between eastern 
and western Grand Canyon blocks; aggradation 
of ~250 m of Bullhead gravels between 5.5 and 
3.3 Ma in the Lake Mojave area (House et al., 
2005) was facilitated by combined slip on the 
Wheeler and Hurricane-Toroweap system. At 
0 Ma, the eastern Grand Canyon block has been 
uplifted 440 m (110 m/Ma × 4 Ma) relative to the 
western Grand Canyon block and an additional 
240 m relative to the Lake Mead block.

TECTONIC UPLIFT VERSUS STATIC 
EROSIONAL MODELS

A static framework for incision of the Grand 
Canyon envisions a previously elevated Colo-
rado Plateau region that was passively incised 

by a deepening canyon system (and progressive 
water-table lowering) in response to base-level 
fall. However, analyses of modern mantle veloc-
ity structure beneath the region (Sine et al., 2008) 
and the geoid (Coblentz and van Wijk, 2007) 
provide compelling evidence for a more dynamic 
framework involving mantle tectonism due to 
small-scale asthenospheric convection beneath 
the western edge of the Colorado Plateau . In par-
ticular, edge-driven convection associated with 
a migrating step in the lithosphere (Fig. 5) is 
proposed as a mechanism to produce a dynami-
cally supported ~400-m-high topographic welt 
and a 2–4 m geoid high near the edge of the 
Colorado Plateau (Ni et al., 2007; Coblentz and 
van Wijk, 2007). This, combined with the now-
strengthened  differential incision model, sug-
gests links among dynamic mantle upwelling, 
faulting, surface uplift (similar but smaller mag-
nitude than Lucchitta, 1979), migration of vol-
canism (Fig. 4; Nelson and Tingey, 1997), and 
fl ux of mantle volatiles (Crossey et al., 2006).

CONCLUSIONS
Our hypothesis is that active faulting and 

broadly distributed epeirogenic uplift have 
infl uenced differential incision of the Grand 
Canyon in the past 6 Ma. Recent interpretations 
of new U-Pb dates on speleothems as provid-
ing evidence for a 17 Ma Grand Canyon (Polyak 
et al., 2008) are geologically unsupported. The 
assumption that water-table lowering rate is a 
proxy for canyon incision rates is invalidated by 
an analysis of the modern Redwall-Muav aqui-
fer system, although apparent rates may be used 
as maximum rates. A combination of the low-
est rates based on new U-Pb data, Quaternary 
incision rate data, and geologic constraints indi-
cates that incision rates have been semisteady 
back to 3–4 Ma, with persistently different rates 
in the western (50–80 m/Ma) versus eastern 
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(175–250 m/Ma) Grand Canyon. This differ-
ence is due to ~700 m of east-side-up Neogene 
block uplift of the Colorado Plateau relative to 
the Basin and Range in the past 6 Ma driven by 
asthenospheric fl ow. We favor a “young can-
yon” model and show here that fault evolution 
and neotectonic driving forces are components 
that must be included in any viable model for 
the incision history of the Grand Canyon.
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