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Abstract. Linear systems analysis is used to investigate the response of a surface 
processes model (SPM) to tectonic forcing. The SPM calculates subcontinemal scale 
denudational landscape evolution on geological timescales (1 to hundreds of million 
years) as the result of simultaneous hillslope transport, modeled by diffusion, and 
fluvial transport, modeled by advection and reaction. The tectonically forced SPM 
accommodates the large-scale behavior envisaged in classical and contemporary 
conceptual geomorphic models and provides a framework for their integration and 
unification. The following three model scales are considered: micro-, meso-, and 
macroscale. The concep• of dynamic equilibrium and grade are quantified at the 
microscale for segmems of uniform gradient subject to tectonic uplift. At the larger 
meso- and macroscales (which represent individual interfluves and landscapes 
including a number of drainage basins, respectively) the system response to tectonic 
forcing is linear for uplift geometries that are symmetric with respect to baselevel and 
which impose a fully integrated drainage to baselevel. For these linear models the 
response time and the transfer function as a function of scale characterize the model 
behavior. Numerical experiments show that the styles of landscape evolution depend 
critically on the timescales of the tectonic processes in relation to the response time of 
the landscape. When tectonic timescales are much longer than the landscape response 
time, the resulting dynamic equilibrium landscapes correspond to those envisaged by 
Hack (1960). When tectonic timescales are of the same order as the landscape 
response time and when tectonic variations take the form of pulses (much shorter 
than the response time), evolving landscapes conform to the Penck type (1972) and 
to the Davis (1889, 1899) and King (1953, 1962) type frameworks, respectively. The 
behavior of the SPM highlights the importance of phase shifts or delays of the 
landform response and sediment yield in relation to the tectonic forcing. Finally, 
nonlinear behavior resulting from more general uplift geometries is discussed. A 
number of model experiments illustrate the importance of "fundamental form" which 
is an expression of the conformity of antecedent topography with the current tectonic 
regime. Lack of conformity leads to models that exhibit internal thresholds and a 
complex response. 

Introduction 

It becomes increasingly important to understand 
erosional denudation on geological timescales (105 -109 
years) as our understanding of geological subsystems, such 
as sedimentary basins, compressional orogens, and rifts, 
increases. Many recent papers argue the importance of or 
explore the role of (1) flexural isostatic feedback between 
erosion and deposition [Flemings and Jordan, 1989; 
Sinclair et al., 1991; Johnson and Beaumont, 1995], (2) 
climate coupling and erosional control of the exhumation 
and deformation in compressional orogens [Koons, 1989; 
Beaumont et al., 1992; Hoffman and Grotzinger, 1993], (3) 
complex response and the associated temporal and spatial 
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variability of sediment transport in the production of 
stratigraphic sequences [Schumm, 1980, 1993; Wescott, 
1993], and (4) the relative importance of tectonics and 
climate in mountain building [Molnar and England, 1990; 
England and Molnar, 1990]. 

Two related ideas that may lead to a tangible framework 
for the study of landscape evolution on geological 
timescales appear frequently in papers published during the 
last three decades. (1) Large-scale, long-term landscape evo- 
lution can be viewed as the behavior of a process response 
system. It follows that the behavior can be studied by 
methods of system analysis if the system can be quantified 
[e.g., Chorley, 1962; Howard, 1965, 1982; Huggett, 1988; 
Phillips and Renwick, 1992]. (2) Classical conceptual geo- 
morphic models may be valid under specific tectonic, 
climatic, and substrate conditions and at specific scales 
[e.g., Higgins, 1980; Palrnquist, 1980]. These ideas imply 
that apart from some claims to universal applicability, 
there may be no conflict among the various classical 
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conceptual models and that these models might be 
reconciled with modem concepts within a single numerical 
framework. 

Inspired by these ideas, we take a practical approach to 
large-scale long-term landscape evolution. We quantify the 
geomorphic system in a simplified, process-based form and 
investigate the behavior of this surface processes model 
(SPM) systematically to see to what extent and under what 
conditions it accommodates the various geomorphic con- 
cepts, an approach advocated by Tinkler [1985, p. 238]. 
The same approach can be taken for alternative process 
formulations, as in the smaller-scale examples [e.g., 
Willgoose et al., 199 la; Howard, 1994], and a comparison 
made of the behavioral characteristics. Also, since an SPM 
makes predictions for all its component parts, these 
predictions can be compared with the fragmentary 
geomorphic record in an integrated manner. Such an 
approach is commonly used when scientific problems are 
too complex for direct inductive solution and is not 
generally regarded a priori to be a sterile exercise [Ritter, 
1988], even if a unique solution does not emerge. 

The development of SPMs is not new. In recent years, 
Ahnert [1976, 1987a, b], Kirkby [1986], Chase [1992], 
Willgoose et al. [1991a, b], Beaumont et al. [1992]; 
Tucker and Slingerland [1994], and Howard [1994], for 
example, have developed and studied the behavior of SPMs 
that includes interactions among a small number of 
processes that are individually relatively simple and that 
operate on planform (two-dimensional) model 
topographies. Most of these studies investigate model 
behavior of either single catchments or hillslopes or small 
areas and relate model predictions to geomorphic concepts 
appropriate for these scales [e.g., Ahnert, 1987b; 
Willgoose et al., 1991a; Howard, 1994], regional 
observations [e.g., Rosenbloom and Anderson, 1994], 
and/or empirical relationships [Willgoose et al., 1992; 
Willgoose, 1994a]. Chase [1992] and Tucker and 
Slingerland [1994] employ their SPMs at scales larger 
than single catchments (subcontinental scale) but do not 
compare restfits with classical geomorphic models. 

and the concept of grade. At the larger meso- and 
macroscales (defined at the scale of interfluves and 
landscapes including a number of catchments, respectively) 
we require the SPM for illustrative model experiments, and 
the analysis for these scales is made concurrently. 

At each of the scales we investigate the steady stat•$ of 
the system when the external controls are held constant. 
The system response is then shown to be linear for certain 
tectonic uplift geometries, where the spatial distribution is 
simple and remains constant. For these linear models the 
response time and transfer function as a function of scale 
characterize the model behavior. Model experiments are 
used to show that basic forms of landform evolution envis- 

aged by Davis [1889,1899], Penck [1972], Hack [1960], 
and King [1953,1962] occurs, depending on the timescales 
of the tectonic processes in relation to the response time of 
the landscape. Finally, we illustrate the importance of 
"fundamental form" [Brice, 1964] using a number of model 
experiments. Fundamental form is interpreted as an 
expression of the conformity (or sympathetic nature) of 
antecedent topography with the new tectonic geometry. 
Lack of conformity leads to geometrical nonlinearity in the 
model response. Models of this type exhibit a complex 
response. 

The Surface Processes Model 

Model Formulation 

The SPM [Beaumont et al., 1992; Kooi and Beaumont, 
1994] simulates erosional denudation at spatial scales of 1 
to hundreds of kilometers and timescales of 1 to hundreds 

of million years. It calculates long-term changes in 
topography h that result from simultaneous short- and 
long-range mass transport processes using a combination 
of diffusion, advection, and reaction. Short-range transport 
represents the cumulative effects of hillslope processes and 
is modeled as linear diffusion 

dh / dt = KsV2h, (1) 

Focus and Organization 

In this paper we briefly review and use a SPM 
[Beaumont et al., 1992; Kooi and Beaumont, 1994] that is 
designed for subcontinental scales and compare its behavior 
with landscape evolution envisaged in conceptual models. 
The central theme is to point out that (1) many apparently 
incompatible conceptual interpretations of landscapes and 
their evolution are not necessarily incompatible (even 
though some were claimed to be universal) and (2) they can 
be viewed as different styles of behavior in a single simple 
system when different processes dominate. Among the 
range of potential controls, we focus on the roles of 
tectonics and antecedent topography, factors which were 
found to be primary in the integration of the classical con- 
ceptual geomorphic models in the SPM. This approach 
does not assume these concepts to be valid or prove them 
to be so. It only shows how they may be reconciled. 

We consider the following three scales: micro-, meso-, 
and macroscale. At the microscale, uniform gradient 
segments of landforms are analyzed analytically for their 
characteristic behavior in relation to dynamic equilibrium 

with diffusivity K s , which is interpreted to depend on both 
climate and substrate. Long-range transport represents 
fluvial transport in which the equilibrium fiver sediment 
carrying capacity, qeqb=-K qrdh/dl, is a linear func- ß of. f 
laon of the local discharge qr, and the local downstream 
slope dh/d/, and Kœ is a nondimensional transport 
coefficient. Discharge-is the result of precipitation VR 
distributed over the model topography and collected by 
rivers that follow routes of steepest descent. It is not 
assumed that the fluvial transport system is everywhere 
carrying at capacity. Instead, fluvial entrainment of the 
sediment flux qf is controlled by an erosion length scale 
l f, a measure of the detachability of the substrate. 

c}h / c}t = -dq f / dl = -(1 / l f )(q•qb _ q f ). 

A high value of lf_ corresponds to a low detachability, and 
the converse is also tr0. e. The reaction is driven by the 
local undercapacity (q•qV _ qœ ) of the fiver. 

The present appro•ich differs from other formulations 
[e.g., Willgoose et al., 1991b; Tucker and Slingerland, 
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1994; Howard, 1994] in that these models do not explicitly 
consider fluvial entrainment or detachment of material as a 

reaction. Instead, the sediment flux (and not the rate of 
entrainment) is considered to be proportional to the 
erodability. Here it is the rate of entrainment that is 
proportional to the "erodability" of the substrate. To avoid 
confusion, we avoid the term erodability and refer to the 
reaction constant, 1/If, (see (2)), as the detachability of 
the substrate. 

The model contains the minimum requirements for 
drainage basins to develop [Howard, 1994], the superposi- 
tion of diffusive and advective processes. The reaction com- 
ponent provides a first-order treatment of the fluvial 
incision into bedrock by detachment and allows us to 
investigate transport and weathering-limited conditions. 
When bedrock rivers are well below capacity, the reaction 
reduces to a linear form of the power rate law proposed by 
Seidl and Dietrich [1992] and discussed by Howard et al. 
[1994]. Although nonlinearities may exist, we start with 
the linear system behavior because it is more easily under- 
stood. Moreover, nonlinearity in the short-term behavior of 
a fiver system, for example, does not necessarily mean the 
geologically averaged behavior is also nonlinear [Kooi and 
Beaumont, 1994]. Therefore it should not be assumed a 
priori that a linear model is necessarily wrong. 

Our model differs from the Willgoose et al. [199 la] 
SPM in that we do not include a channel initiation 

function and they do not include the detachment limited 
fluvial-bedrock interaction. In our model, diffusive and 
fluvial processes operate simultaneously in each model grid 
of the landscape and we do not distinguish channel and 
hillslope elements. Diffusion carries material to the eight 
surrounding grids, and fluvially advected material is routed 
along one-dimensional corridors. Fluvial entrainment and 
deposition are averaged over a grid, so there is no 
morphological expression of a fiver channel within a grid 
and the term "channel" is avoided. In our formulation, 
processes that occur at a scale smaller than the grid 
resolution are necessarily represented by diffusion. Given 
that this scale is • 1 km in the models discussed here (the 
large-scale focus of our work), we are confronted with the 
same range of problems addressed by Howard et al. [1994] 
when scaling small-scale models, which fully resolve 
drainage density and respresent short timescales, to the 
equivalent behavior at large spatial scales and timescales. 
Until subgrid scale models are developed, we have taken 
the simple approach of representing unresolved processes 
by an effective diffusivity. As Kooi and Beaumont [1994] 
note, we do not argue that diffusion actually occurs at these 
scales. This scale problem is the basis for the difference 
between our simple approach and the more complete small- 
scale models that fully resolve the drainage network yet are 
computationally too demanding for large-scale long-term 
problems. When it becomes clearer what amalgam of 
processes operates at these small scales and how it works 
on long timescales, the simple diffusive model will be 
replaced. Kooi and Beaumont [1994] more extensively 
justify the model components and give an interpretation of 
the model parameters. A description of the integration of 
the transport equations is given by Beaumont et al. [1992]. 

In the work reported here the SPM is coupled to a model 
of flexural isostasy. The isostatic response is calculated by 
averaging the net change of topography for each model 

time step in the strike direction, applying this change as a 
load to an elastic beam (effective elastic thickness Te) 
overlying an inviscid fluid and then correcting the 
topography for the predicted beam displacement. This 
approach is appropriate for the simple tectonic geometries 
used here and for geological timescales (> 105 years) where 
transient effects due to mantle viscosity are negligible 
[Kooi and Beaumont, 1994]. 

The Model as a Hierarchy of Open Systems 

The SPM acts as a nested hierarchy of open systems, 
where an open system is defined as one which can 
exchange mass across its boundaries with its surroundings. 
Although the system has a continuum of scales, we 
distinguish three regimes (micro-, meso-, and macroscales) 
that are linked to typical geomorphic units. A model grid 
is the smallest resolvable open subsystem for a given level 
of discretization used in a model landscape. A microscale 
subsystem is a group of grids that forms a segment of 
uniform gradient. Such subsystems do not represent either 
individual channels or hillslopes because, as discussed 
above, the model generally does not resolve these features. 
However, when a microscale subsystem is 
fiuvially/diffusionally dominated, it will behave like a fiver 
valley/hillslope. Microscale subsystems are grouped to 
form mesoscale subsystems representing, for example, 
river reaches or interfluves. Mesoscale subsystems are 
grouped to form the total macroscale system of the model 
landscape which consists of several drainage basins. 

Mass exchange occurs among the systems by tectonic 
uplift and sediment transport through their boundaries. We 
focus on the open system behavior because (1) large-scale 
erosional landscape evolution involves sediment transport 
on small to large spatial scales; (2) at these large spatial 
scales, tectonic and isostatic uplift occurs; and (3) classical 
conceptual models of large-scale landscape evolution 
assume sediment transport through baselevel and ignore 
sedimen•on below baselevel [Howard, 1965]. 

Each subsystem has its own set of external controls 
which consist of initial conditions, boundary conditions, 
and the values of the independent variables. Together with 
the internal system controls or consfitufive relationships 
given by the transport equations (1) and (2), they determine 
how the system (e.g., elevation h and sediment flux) 
evolves. 

Microscale Model System: Behavior of 
Uniform Gradient Segments 

The microscale model behavior demonstrates how con- 

cepts (e.g., grade, response time, and dynamical 
equilibrium) are quantified in this SPM and how they relate 
to those in other models [e.g., Howard, 1982] and provides 
a basis for meso- and macroscale analysis. 

Consider a microscale subsystem or element (length Al, 
uniform gradient, S) that is tectonically uplifted or tilted 
(Figure 1). We analyze the system for the time dependence 
of the adjustment of S in the following two cases: (1) 
fluvial, where sedimem flux and discharge at the upstream 
end are qœ and qr, respectively; and (2) diffusive, where 
the corres-ponding flux is qs. The tectonic uplift velocity 
of the upper end is VT, its denudation rate is VE, and 
surface uplift velocity is Vh = VT + VE (Figure 1). Primed 
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Uniform Gradient Sub-System 

Fluvial qr, qf 
Diffusive ch 
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Figure 1. Microscale uniform gradient S segment or 
subsystem length Al. For fluvial analysis the sediment 
flux and discharge at the top end of the segment are qf and 
qr, respectively. For hillslope (diffusive) analysis the 
corresponding sediment flux is qs. The tectonic uplift 
velocity of the top end is v T, its denudation rate is VE and 
surface uplift rate is vn = VT + vœ. All velocities are 
positive upward. Primes refer to the same quantities at the 
bottom end of the segment. The dependent variable of the 
system, v•, is given by (1), (2), or a combination 
thereof. We assume that lithology is uniform with depth 
and that the nondimensional transport coefficient Kf is 
constant. 

quantities refer to the same quantitie• at the base of the 
element. In the appendix we solve •S/•t for the 
independent and combined fluvial and diffusive evolution 
using (1) and (2). 

Fluvial Transport 

The results (appendix) show that the element adjusts its 
gradient with fluvial response time 

t•fi = Al(lf / Kfqr). (3) 

For constant external controls, S exponentially approaches 
a steady state, •S / 3t = 0 (see (A3)), in which the differen- 
tial tectonic uplift is balanced by differential denudation, 
i.e., 

-vr (4) 

When the external controls change on timescal•es to 
that are much longer than the response time t•, >> •'•, th• 
gradient of the segment will stay close to the'steady states 
that correspond t•o the current state of the external controls 
(tgS / & << S / r•, (A3)), i.e., in dynamic equilibrium. 
This state is not a true equilibrium but a near-equilibrium 
or, as Howard [1982] states it, equilibrium within a 
consensual degree of accuracy. 

The limiting state in which the dynamic equilibrium 
slope SD• becomes the exact equilibrium can be found by 
expressing VE in (4) in terms of the fluvial reaction given 
in (2) and solving for S, 

SDE = [-qf + If (v• + v• - vr)] (5) ß 

Kfqr 

We now consider three special cases which are useful in the 
analysis of both microscale and larger-scale landform 
evolution. 

Grade: The state of dynamic equilibrium 
with no deposition or erosion. For v E =0 the 
exact equilibrium slope SGR corresponds to the situation 
where the segment transports sediment delivered from 
upstream without erosion or deposition. This state 
corresponds to the description by Mackin [1948] of a 
graded fiver and accords with other definitions [e.g., 
Schumm, 1977; Morisawa, 1985] (see also Howard 
[1982] for an extended discussion). By combining (4) and 
(5), it follows that 

SGR =- q f (6) 
Kfqr 

and, as expected, the graded condition is equivalent to that 
of carrying at capacity in this model. 

Model experiment M1 (Figure 2) illustrates the 
difference between the dynamic equilibrium and the graded 
condition for uniform gradient segments. The experiment 
follows the evolution of two rivers without tributaries that 

drain opposite sides of a drainage divide. The small 
segments Al of the river draining to the left quickly 
achieve a gradient S^c that is close to SD•, even at large 
distances from baselevel and irrespective of substrate 
detachability. These segments can almost maintain 
equilibrium with the change in their local external controls 
(v• and q ) and therefore are in dynamic equilibrium. f 

The rate of change of slope of a segment is proportional 
to the deviation from equilibrium, 
OS /Ot = (Srm - S^c) / •:• (obtained by combining (A3) 
and (5)), therefore equilibrium is approached but not 
achieved. The disequilibrium "drives" the change in 
gradient observed in "cyclic time" [Schumm and Lichty, 
1965]. Where S^c > SDE, slope decline occurs and vice 
versa. 

Similarly, the close approach to grade in M1 (Figure 2), 
particularly where gradients and erosion rates are low, can 
be approximated by 

S^c - SaR - SaR = 
+ - vr) 
Kfqr 

Grading is enhanced by an easily detached (low If) sub- 
strate, a high discharge, and, for uniform or zero uplift, by 
a low rate of local baselevel erosion, v•. The dependence 
on discharge explains why grading first occurs at the 
baselevel of the model river and subsequently proceeds 
headward [Gilbert, 1877]. Figure 2 shows that the headward 
expansion of grade and the break in slope between graded 
and ungraded regions of the model river are most 
pronounced for a substrate that is hard to detach. 

Dynamic equilibrium (equation (5)) depends on the scale 

of Al. SDE approaches SAC, as •l is reduced, consistent with a model response time r• proportional to Al 
(equation (3)). This result demonstrates why the concept of 
dynamic equilibrium or grade in fluvial geomorphology 
must always be related to scale. 

Gilbert [1877] introduced the concept of grade in the 
context of stream profile development as a form of 
dynamic equilibrium (achieved by equal action and 
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Figure 2. Results of model experiment MI. The experiment follows the evolution of two single- 
thread rivers without tributaries that drain opposite sides of a drainage divide. Hillslope diffusion, 
tectonic uplift, and isostatic compensation do not operate. Precipitation V R is uniform, and therefore qr 
increases linearly downstream. River profiles are shown for seven time steps. In the absence of diffusion, 
divides are not eroded [Kooi and Beaumont, 1994]. The dynamic equilibrium slope SDE, graded slope 

SGR, and the actual slope SwA•t • are plotted for the fiver draining to the left for time steps 2, 4, and I' Calculations use segments length AI = L / 60 for which it is assumed the gradient is uniform. 
is the fiver length. Results are shown for the following three substrate erodibilities: (1) If << L, (2) 
If -- L, and (3) If >> L. These values correspond to progressively more erosionally resistafft substrates. 

maintained by negative feedback). Our analysis 
demonstrates that grade corresponds to the special form of 
dynamic equilibrium in which the local erosion rate is zero 
or, equivalently, the stream carries at capacity. The 
assumption of a zero erosion rate probably has a dual 
origin. The first stems from the observation that the 
valleys of many major rivers which have incised close to 
baselevel and that are regarded to be graded have a cover of 
alluvium, which implies that net erosion has not occurred 
since the alluvium was deposited. The second probable 
origin arises because erosion by streams is observed in 
what Schumm and Lichty [1965] call "steady tim•e" (order 
of 10 -1 year), or "graded time" (order of 10 z years), 
timescales too short to observe bedrock incision, yet the 
material transported by the stream may be perceived to be 
very large. However, in "cyclic time" (104 years and 
longer [Schumm and Lichty, 1965]) the timescales at 
which our model landscape evolution is calculated, the 

assumption of a zero erosion rate breaks down because 
even in the absence of tectonic and isostatic uplift, graded 
rivers must erode into bedrock in order that the topography 
approaches baselevel sate. This concurs with the statement 
by Howard [1982] that the condition of zero (negligible) 
erosion must be maintained for a time period 
commensurate with the relaxation time of the river 

segment. Isostatic compensation to denudation only 
increases the nee• for graded rivers to erode their beds since 
it produces an effective uplift. 

Dynamic equilibrium for uniform uplift. For 
uniform uplift of a fluvially dominated uniform gradient 
segment, that is when v•-v T =0 (Figure 1), the 
dynamic equilibrium gradient (equation 5) is given by 

lvi SD]• = (-q f + l f v• ) = SGR + •. (8) 
Kfqr Kfqr 
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The behavior of the second term, which represents a cor- 
rection to the graded condition, is quite instructive. 
Assume, for example, a fiver at grade that is uniformly 
uplifted with respect to the baselevel of the river or, 
equivalently, whose baselevel is dropping. The correction 
term is initially zero for any segment some distance from 
baselevel because the fiver is at grade (by definition, not 
eroding) and therefore v• of the segment is zero. There is 
therefore no instantaneous response to uniform uplift or, 
equivalently, since uniform uplift does not modify slope, 
no response is needed to maintain dynamic equilibrium. 
There is, however, a delayed response which is initiated at 
the periphery of the uniformly uplifted area and propagates 
upstream. A uniformly uplifted segment responds to 
nonuniform uplift elsewhere, and the delay depends on the 
response time for this distance. 

Dynamic equilibrium for tectonic tilting. The 
dynamic equilibrium gradient (equation (5)) for tilting with 
zero net uplift of the uniform gradient segment ( v• = -VT) 
is given by 

-- + - :vl] __ + 
Kfqr 

l f v• 21f VT . (9) 
Kfqr gfqr 

There are now two corrections to the graded slopeß The first 
is the same delayed effect of uniform uplift (equation (8)). 
The second is the immediate response to local tilting 
which occurs with the response time of the uniform 
gradient segment (equation (3)). 

Hillslope Diffusive Transport 

The results (appendix) also show that the uniform 
gradient segment has a diffusive response time which is, as 
expected, the usual diffusive timescale [e.g., Carslaw and 
Jaeger, 1959; Culling, 1965; Koons, 1989] 

,• = Al 2 / K s . (10) 

The dynamic equilibrium slope is 

SDE = [-qs + Al(v• + v• -vr )] (11) ß 

The first term SG• =-qs/Ks is the graded slope. 
It is always approached for very short slope segments. 
The graded condition for diffusion and uniform substrate 
conditions corresponds to uniform gradient slopes. When 
an interface is present separating lithologies 
with diffusivities Ks(l) and Ks(2), 
SC;R(1) / SC;R(2) = Ks(2) / Ks(l). 

The term that depends on v• in (11), like that in (8), 
represents the delayed response to nonuniform uplift some 
distance away from the slope segment, generally caused by 
stream incision at the base of the hill. Therefore 

adjustments due to relative baselevel changes of the 
macroscale landscape not only migrate up the fiver valleys 
(Figure 2), but also migrate up the hillslopes toward the 
divides. Grading of hillslopes forms an integral part of 
Davis' [1889,1899] cycle of erosion [e.g., Chorley et al., 
1973, p. 183]. Hack [1960, pp.85-86] describes (dynamic) 

equilibrium of river reaches as well as hillslopes as a 
condition in which "all elements of the topography are 
mutually adjusted so that they are downwasting at the same 
rate." 

Meso- and Macroscale Model System: Steady 
State and Step Response 

The behavior of the meso- and macroscale model system 
under tectonic forcing requires numerical analysis, 
and, for this, we explicitly separate the spatial 
and temporal com•ponents of tectonic uplift, 
VT(X,y,t)= v•(x,y)[v•,(t)l. We first show that steady 
state model landforms also occur at these larger scales. We 
then investigate model behavior for a step change in 
tectonic uplift rate. The model exhibits linear behavior for 
symmetric uplift geometries which also impose a fully 
integrated drainage system. Response times •2 and •1 can 
be der'reed for meso- and macroscale model landforms, 
respectively. 

Steady State Equilibrium Landforms (Penck, 
Hack, and Davis' Peneplain) 

In geomorphology the dependent variable of interest is 
elevation or its derivatives, slope, or form [Hack, 1960]. In 
a landscape in which elevation has achieved a steady state, 
the rate of tectonic uplift equals the rate of denudation 
everywhere. This concept forms an important part of the 
classical works of Penck [1972, p. 12] and Hack [1960, 
p. 86], although Hack expressed it in terms of uniform 
denudation rate across the landscape. 

Illustrative model experiments. The results of 
two model experiments M2 and M3 (Figure 3) demonstrate 
that the model landscapes, in common with other SPMs 
[e.g., Willgoose et al., 1991c; Howard, 1994], evolve 
toward a steady state when the external controls are 
constan[ In the area of the vertical dike of resistant rock in 

M3 (Figure 3b), greater relief and steeper slopes than in 
M2 are required to achieve steady state, consistent with the 
ideas of Hack [1960]. 

When the macroscale model landscape is in steady state, 
so are the smaller-scale subsystems. Each has achieved 
steady state for its own set of external controls. River 
reaches have achieved equilibrium for (1) the substrate 
lithology along the fiver, (2) tectonic uplift rate along the 
fiver, (3) the rate at which the baselevel of the fiver is 
falling, (4) the sediment and water fluxes derived from the 
adjacent hillslopes and tributaries, and (5) the value of K . 
Interfluves have achieved equilibrium for (1) substrafte 
lithology, (2) tectonic uplift rate, and (3) the incision rate 
of the neighboring streams. 

General conditions for steady state model 
landscapes. Other experiments with a spatially uniform 
uplift distribution, different climate and substrate 
conditions, and isostasy (Figure 4) also result in steady 
states. It can be argued that steady state model landscapes 
exist for any time-independent combination of the external 
controls, provided the lithology distribution is independent 
of depth [Howard, 1965]. Steady state landscapes also 
exist when baselevel falls at a constant rate, even in the 
absence of tectonic uplift. Under these circumstances, 
steady state refers either to form or to elevation with 
respect to "ultimate" baselevel [Hack, 1960]. Similarly, at 
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Figure 4. Large-scale, integrated model response to a 
step change in v• measured by the ratio of the total 
sediment flux •s that exits the model to the the total 
tectonic influx d• T of material through its base. Results 
are shown for experiment M2 and for several cases in 
which either the scale or one of the controls has been 
modified with respect to M2 as described in the text. The 
response curves approximately obey (12), demonstrating 
linear behavior of the macroscale model system. Note that 
the timescale is 0-300 m.y. for the spatial scale x10 
experiment. 

steady state concept can only be applied to mean behavior 
at geological timescales. 

Response to a Step Change in Tectonic Uplift 
Rate: Linear Behavior 

Response time of macroscale landscapes. M2 
is an example of a model in which the landscape evolves in 
response to a step change in v• (Figure 3). For t < 0, 
v• = 0 and the landscape is a flat surface with low 
amplitude white noise topography. For t > 0, v• > 0 and 
the landform evolves from the initial steady state to 
another [e.g., Willgoose, 1994a]. The change is rapid at 
first then progressively slows as the steady state is 
approached. 

Figure 4 illustrates the integrated model response mea- 
sured by the ratio of the total sediment mass flux •s that 
exits the model to the the total tectonic influx of material 

through its base d• T, i.e., the integral of v• over the 
uplifting region. The step response of M2 is exponential 
in form (Figure 4) which implies that despite the 
complexities of behavior as a function of scale the whole 
system evolves at a rate proportional to its disequilibrium. 
That is, 

(12) 

the mesoscale an interfluve achieves a steady state form 
when its elevation changes at the same rate that the 
adjacent streams incise (the dynamic equilibrium of Ahnert 
[1987b]). 

A trivial steady state landscape is the flat surface at 
baselevel [Willgoose et al., 1991a]. It occurs when the 
tectonic uplift rate and the rate of baselevel fall are zero 
everywhere in the model domain and this state is 
independent of the other external controls. This flat surface 
is the model planation surface or ultimate plain [Chorley 
et al., 1973, p. 190]. 

Equifinality. All steady state model landscapes, apart 
from the flat surface, depend on the initial topography. It 
determines the initial drainage network which subsequenfiy 
evolves to steady state by divide migration and drainage 
capture. Drainage capture is generally necessary because the 
drainage net must be fully integrated and connected to 
baselevel before the steady state landscape can be achieved. 
Details of the ultimate drainage network and the exact loca- 
tion of channels and interfluves in the steady state land- 
scape reflect differences in the initial model topography and 
drainage net. Model experiments show that for a given tec- 
tonic uplift rate, climate, boundary conditions and substrate 
a suite of landscapes exist that satisfy the condition of 
steady state. The topography of M2 (Figure 3), for exam- 
ple, is not symmetric with respect to a vertical plane per- 
pendicular to the main drainage divide, even though its ex- 
ternal controls are symmetric. The mirror image of the 
model is another steady state landscape for the same 
external controls. 

The suite of models may have morphomeu'ic characteris- 
tics in common [see also .rioward 1994]. If so, the concept 
of equilreality should be applied to these statistical proper- 
ties. An additional point is that steady states exist only 
when the external controls do not vary with time. Short- 
period fluctuations occur in natural systems, therefore the 

where • is the response time, the time taken to reduce the 
disequilibrium to 1/e times the initial disequilibrium 
(similar to Howard's [1982] relaxation time). The response 
time is independent of the magnitude of the step change in 
uplift rate. An equivalent exponential "relaxation" response 
is also given when M2 is first brought to a steady state 
with constant v•,, and v•, is subsequently set to zero. The 
relaxation response time is the same as the response time 
for a step function increase in v•,, as expected for systems 
governed by equations of the form of (12). 

Figure 4 also illustrates the same measures of the 
system response when (1) the precipitation rate in the 
model is doubled, (2) substrate detaches more easily 
(erosion length scale is halved), (3) isostatic compensation 
of the denudation is included, and (4) the spatial scale of 
the model is increased by a factor of 10. The restfits show 
that the response time is sensitive to climate and substrate, 
factors that control the efficiency of surface mass transport, 
and to the spatial scale of the model. Similar conclusions 
were reached by Ahnert [1987b] for the response time of a 
single slope subjected to slope wash. 

In these experiments the response time is not sensitive 
to the value of v•, because v• takes the form of tilting 
slopes and both the diffusive and fluvial transport equations 
(1) and (2) have a linear slope dependency. The response 
time remains the same, but the slopes and elevations of 
the steady state landform and both •!5 r and •s increase in 
proportion to v•. 

Experiments where the wedge-shaped uplift geometry of 
M2 is replaced by the uniform uplift of a plateau geometry 
have similar exponential like response curves and charac- 
teristic response times. A small deviation in the early 
evolution corresponds to an initial phase in which the 
drainage network on the plateau is reorganized into a fully 
integrated network that drains to baselevel. Ahnert [1987b] 
found that in similar one-dimensional experiments (he used 
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a uniform rate of baselevel fall) the response time was a 
function of the rate of fall. However, his slope wash 
denudation model had a nonlinear slope dependence. The 
linear behavior of our model reflects the linearity of the 
processes when the model geometry does not involve 
successive large-scale drainage reorganizations and when 
the substrate conditions are constant• 

The effects of tectonic uplift rate, climate, and substrate 
on the response to a step in tectonic uplift rate are easy to 
understand, but the effect of isostasy (Figure 4) needs some 
explanation. Isostasy counteracts the change of surface 
elevation caused by denudation and tectonic uplift. When 
tectonic uplift exceeds denudation and topography grows 
(e.g., Figure 3), isostasy introduces a component of 
subsidence at a rate proportional to the average surface 
uplift rate in the absence of isostasy. The converse is also 
true. The constant of proportionality (p ranges between 0 
for an infinitely rigid lithosphere and (p = Pc/Pro for local 
isostatic compensation, where is the density of the uplifted and/or renuder bedrock •d Pm is the density of 
the compensating mantle rock. Isostasy, therefore, 
modifies the effective surface uplift rate and the response 
time by factors (1- (p) and 1 / (1- (p), respectively. The 
topography of the steady state landform is not affected by 
isostasy since, by definition, in steady state the surface 
elevation is stationary and, consequently, further isostatic 
adjustment does not occur. 

Transfer function. Following standard linear 
systems analysis, the dynamical behavior of the model 
system (equation (12)) is best characterized in the frequency 
domain, where the model response for a general form of 
tectonic forcing can be decomposed into the responses of 
the individual spectral components of the forcing function. 
Fourier transformation of (12) yields 

ß $(f)l(i2nf + 1 / •:)I = •r(f)(1 / •), (13) 

where •s ( f ) and •T ( f ) are the Fourier transforms of 
ß s(t) and •r(t), respectively, and f is frequency. The 
transfer function of (12) is then 

H(f ) = •$(f ) / •r(f ) = 
1 

(14) 
1+ i2nf,' 

which has amplitude and phase parts (Figure 5) 

I 1 IH(t)l = '1 + (2/r•' / tp )2' (15) 

arg[H(tp)]= - arctan(2/r•'/tp), (16) 

where t t, = 1 / f is the period. Figure 5 illustrates how the 
model system filters the input •r(tp) to give output 
•s(tt,). Three domains can be distinguished as follows: 
(1) tt, >> ,, the sediment flux is in phase with the 
tecton-ic flux and has the same amplitude; (2) tp << •', the 
sediment flux is strongly attenuated and delayed by up to 
tio / 4; and (3) tp -- 2try', the system attenuates the input 
by approximately a factor of 2 and delays the output by 
approximately tt, / 8. 

Conditions for linear behavior. The linear 

macroscale behavior seen in Figure 4 occurs when the 
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Figure 5. Transfer function (equation (14)) of (12) 
describing the linear behavior of the macroscale landscapes 
for temporal changes in tectonic uplift v• where t• is 
period and ½' is the response time. Both the amphtude 
(equation (15)) and phase response (equation (16)) are 
shown. Three behavioral domains are distinguished as 
follows: (1) tt,/½'>>l (2) tt,/•:<<l, and (3) 
tp /t • 2•r. 

uplift geometry meets the following conditions: (1) v• is 
symmetric with respect to baselevel and (2) v•- imposes a 
fully integrated drainage net which drains all of the 
topography to baselevel (i.e., it does not contain internal 
drainage). These conditions follow from the requirement 
that a linear system must satisfy the principle of 
superposition. That is, when the model sediment flux 
evolution for Vr(1) is given by •s(1) and for Vr(2) by 
q•s(2), then the response to vr(1) + vr(2) is ½s(1) + 
q•s (2). Superposition requires that the drainage nets of the 
landforms that are superimposed are the same. In other 
circumstances, blockages of drainage occur in the 
constructed landscape and these require some transient 
period to be removed. Linear model behavior therefore 
requires that the drainage net is in a steady state throughout 
the model evolution. This will only occur for the above 
mentioned conditions. 

Quasi-linear behavior occurs when the drainage only 
requires minor reorganization. A further restriction to the 
approximately linear behavior is that the tectonic forcing 
consists only of uplift. Nonlinear behavior for other uplift 
geometries will be discussed later. 

Model M2 and its variations (Figure 4) do not start with 
a steady state drainage net but, instead, a net created by a 
white noise topography. The models are, nevertheless, 
linear because the response time of the drainage net 
[Willgoose et al., 1991a] to the imposed wedge uplift is 
much shorter than the response time of the landscape. 

Response time of mesoscale landforms. 
Figure 4 illustrates the quasi-linear scale dependence of the 
response time of macroscale model landscapes for tectonic 
uplift and fixed baselevels. The same scale dependence 
applies for falling baselevels and a reduced or zero uplift 
rate and, consequently, can be used to analyze the behavior 
of a model interfluve between two incising streams which 
control its baselevels. The response time of an interfiuve is 
always smaller than the response time of the larger 
macroscale landscape of which it forms a subsystem. 
Large, fiuvially dominated interfluves have a response time 
that is roughly proportional to interfluve width (equation 
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3), whereas small, diffusion-dominated interfluves have a 
response time that scales approximately as width squared 
(equation (10)). 

Hierarchy of response times. It follows from the 
space-time linkage that the response time of a 
landform/landscape is equal to or greater than those of the 
smaller-scale landform elements that it contains. If the 

response times of the macro-, meso-, and microscale model 
landformsare •:1, •:2 and •:3, respectively, then •:1 > •:2 
> •:3. This scaling has important implications for the 
dynamic states of the respective landforms. 

Meso- and Macroscale Model System: Linear 
Model Behavior for Slow, Intermediate, and 
Impulsive Tectonic Forcing 

Having established that the macroscale model system 
has a characteristic response time • and transfer function 
H(t ), the next step is to investigate how the model 
behavior changes when the timescale of tectonic forcing t v 
is much longer than the response time, of the same ordtr 
as the response time, and when the tectonic forcing takes 
the form of an impulsive event. We interpret these three 
regimes to correspond to the basic tectonic frameworks 
envisaged by Hack [1960], Penck [1972] and Davis 
[1889, 1899] (the cycle of erosion model), respectively, 
and the model landform behavior is compared with the 
behavior described by these authors. 

Dynamic Equilibrium Landforms, (Hack 
Framework): The Product of Slow 
Tectonic Forcing 

The transfer function for the linear model system 
(equations (14)-(16)) shows that when tectonic forcing is 
slow (t•, >> '1), the input and output fluxes •r(t•,) and 
ß s(t•) are approximately equal and that there is no 
significant phase shift or delay in the output with respect 
to the input. This result means that the model landscapes 
evolve with time but remain close to the steady state that 
corresponds to the current tectonic forcing v•, or equiva- 
lently, ½r. Were v• to be held constant at its current 
value, the transient adjustments in the landscapes would be 
small because the system is close to equilibrium. This 
evolution through near-equilibrium macroscale landscapes 
is termed dynamic equilibrium and is equivalent to the 
behavior of the microscale segments of uniform gradient 
discussed earlier, which occurs at much shorter timescales 
because their response time is much less. 

Hack [1960, p. 86] envisaged this style of landscape 
evolution: "... as long as diastrophic forces operate 
gradually enough so that a balance can be maintained by 
erosive processes, then the topography will remain in a 
state of balance even though it may be evolving from one 
form to another." He refers to these landscapes as being in 
a state of dynamic equilibrium. 

Illustrative model. Figure 6 shows results of 
model experiment M4 which illustrate the concept of the 
dynamic equilibrium landscape in the model system. M4 is 
the same as M2, but instead of an instantaneous increase in 
tectonic uplift velocity, the velocity accelerates slowly at a 
constant rate until at 150 m.y. or 25 times the response 
time, it reaches the uplift velocity employed in M2. 
Subsequently, the uplift velocity remains constant. Most 
of the energy in this uplift function is in the range 

>> t I , and dynamic equilibrium is reflected by the fact 
H s keeps close pace with ½T (Figure 6). 

Our description of dynamic equilibrium agrees with 
Strahler [1950], who defines this state to require a balance 
between opposing forces, such that they operate at equal 
rates and their effects cancel each other to produce a steady 
state in which energy is continually entering and leaving 
the system. The system may evolve, but it must be close 
to the steady state that corresponds to the current state of 
the external controls. 

Chorley and Beckinsale [1980] describe dynamic 
equilibrium as a condition in which form oscillates around 
a stable average value which itself trends continuously 
through time. This description largely concurs with our 
definition. However, it is not clear if in their view, the 
evolving form is close to equilibrium with current 
controls. Willgoose et al. [1991a] and Ahnert [1987b], 
for example, use the term dynamic equilibrium to describe 
a landform that is in a steady state for a constant uplift 
rate. 

The concept of dynamic equilibrium applies equally well 
to a model system that is controlled by variables other than 
tectonic uplift (see also Willgoose, [1994a]). Each control 
has its own response time. It follows that a uniformly 
uplifted landscape may evolve in a state of dynamic 
equilibrium in response to long-term changes in climate, 
flexural rigidity of the lithosphere, baselevel, or a substrate 
detachability that varies gradually with depth and/or 
laterally. 

Hack [1960] discussed the concept of dynamic equilib- 
rium landscape evolution in the context of the 
Appalachians. This example poses some problems bemuse 
the plate convergence that was responsible for the uplift 
and growth of the Appalachians probably ceased in early 
Permian time [Pitman and Golovchenko, 1991]. This 
makes ongoing tectonic uplift in that area unlikely, or if it 
does occur, the cause is unknown. Moreover, the 
Appalachians may be considered an old orogen that is 
approaching planation. In other words, this orogen may be 
on the tail of the response curve and evolving very slowly. 
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Figure 6. Macroscale model response for slow tectonic 
forcing (experiment M4) measured by the integrated sedi- 
ment flux H s. The uplift geometry of M2 is used, 
together with a ramp function of tectonic uplift rate v•, 
or, equivalently H T, which increases linearly until 150 
M.y. or 25•:1, after which it is constant. The maximum 
uplift rate is the same as in M2. Here H s keeps close pace 
with H T, indicative of dynamic equilibrium landscapes. 
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If this is true, it will be exceedingly difficult to distinguish 
between (1) the "decay to the peneplain (planafion) state" 
which occurs in the absence of tectonic uplift, (2) a steady 
state equilibrium that would exist for tectonic uplift that 
has continued at a constant rate for a long period of time; 
(3) a "dynamic equilibrium" which occurs for a tectonic 
uplift rate that varies very slowly, and even (4) a "growth 
to a steady state landscape state" that would exist when the 
Appalachians were already reduced to a peneplain in the 
past and were subsequently subjected to a constant, small 
uplift rate that has not existed long enough to achieve 
steady state. 

Pitman and Golovchenko [1991] recently made the 
point that states (2) and (4) might also be produced in the 
absence of tectonic uplift but, instead, with a constant, 
slow rate of eustatic sea level fall since the Late 

Cretaceous. This suggestion is supported by the behavior 
of the SPM where as discussed previously, baselevel fall is 
equivalent to a spatially uniform uplift in the open system 
behavior. 

Dynamic equilibrium of micro- and mesoscale 
landscape elements. The uniform gradient segments 
in M4 experience both uniform uplift and tilting which, 
respectively, have delayed and immediate responses, as 
explained earlier. Both effects modify the local baselevel of 
the adjacent higher elevation segment, and, consequently, 
they initiate a wave of erosion that propagates headward 
toward the divide. When viewed from the perspective of an 
observer fixed in the landscape (Eulerian framework), this 
propagation causes one or more phases of enhanced stream 
erosion. How long these phases last depends on the signal 
length scale and its velocity. The immediate and delayed 
phases of valley incision act as the external controls on the 
inteffiuves. 

It follows that when tectonic uplift geometries are 
smooth, the timescales of the propagated external controls 
on the micro- and mesoscale landscape elements are long, 
perhaps of the same order as the tectonic variations of the 
macroscale landscape. For these conditions the micro- and 
mesoscale landscape elements will tend to be in dynamic 
eqtfilibrium, even when the macroscale landscape is not, 
because they have smaller response times. 

Waxing and Waning Development of Slopes 
(Penck Framework): The Result of Intermediate 
Timescale Tectonic Forcing 

When tt, • •:•, the model behavior is neither independent 
of, nor shive to, the tectonic forcing. It is no surprise that 
this regime posed difficulties to the conceptual modellers. 

Penck [1972] argues that the general assumption made 
by his predecessors, in particular, W.M. Davis, that 
denudation (exogenetic processes) can be regarded to 
succeed tectonic uplift (endogenefic processes) is a special 
case, chosen more for convenience than anything else (or 
as a pedagogic device (M. Summerfield, personal 
communication, 1994)). Penck emphasizes that in order to 
understand erosional landscape evolution, the relationship 
between the intensity of the endogenefic and exogenefic 
processes must be considered. He envisaged that tectonic 
movements commonly involve gradually accelerating 
uplift from initial quiescence, followed by gradual decelera- 
tion to final quiescence. Although Penck was aware of the 
whole range of timescales over which such an uplift cycle 

could theoretically be completed (for example, steady state 
landscapes for constant uplift rates), he believed that inter- 
mediate timescales, which we equate with t t, = •l, are 
most plausible. 

Penck [1972] subsequently developed a conceptual model 
of slope development that remains difficult to understand. 
The model assumes "slope replacement" created by incision 
of a stream at the base of the slope. During retreat the 
lower part of a slope segment is replaced by new slope 
segments that can have different gradients. As the basal 
stream incises, it establishes a new slope segment with a 
gradient that depends on the incision rate of the stream. 
Penck deduced from his model that (1) when the incision 
rate is constant (uniform development), the slopes of 
interfluves develop a uniform gradient and a constant relief 
(elevation with respect to the stream) (2) when incision 
accelerates (waxing development), convex upward slope 
profiles develop and relief increases, and (3) when incision 
decelerates (waning development), concave upward slope 
profiles develop and relief declines. Although Penck did not 
explicitly relate the evolution of incision rate of streams to 
his tectonic framework, others have attempted this for him 
in mutually conflicting ways [Chorley et al., 1984, 
Figure 2.8]. 
Illustrative model. In model experiment M5 we 

investigate the response of the SPM to a Penckian tectonic 
uplift history (Figure 7). The geometry is the same as M2, 
but v• takes the form of a cosine with t t, ~ 2•:1. The 
main result is that the macroscale relief and •ediment yield 
attain a maximum about 6 m.y. after the uplift rate has 
reached its peak value. During the interval when the uplift 
rate is increasing, the relief cannot keep up with the 
dynamic equilibrium relief (steady state for current uplift 
rate). Therefore, when the uplift rate is a maximum, a 
disequilibrium still exists and it takes another 6 m.y., 
during which uplift rate and dynamic equilibrium relief are 
already decreasing, before the disequilibrium is removed and 
the model relief stops increasing. The intersection of the 
model relief and the dynamic equilibrium relief heralds the 
onset of decline of the model relief, a phase which 
continues long after uplift has ceased. 

The phases of growth and decay of relief correspond to 
Penck's [1972] stages of waxing and waning development, 
respectively. This aspect is brought out most clearly by 
the cross-sectional evolution displayed in Figure 7. During 
waxing development the fluvial incision rate is less than 
the tectonic uplift rate. River gradients therefore steepen, 
and incision rates increase, continuously striving to 
achieve equilibrium with the uplift rate. During waning 
development the converse is true. 

The timescales for fluvial incision in M5 are of the 

same order as the tectonic uplift timescale. The interfluves 
are therefore close to a dynamic equilibrium with the 
incision rates at their bases because their response time is 
so small that they can easily keep pace with these 
variations. This explains why during waxing development 
(when incision rates increase), interfluve relief grows; 
during uniform development (when the incision rate is 
constant), interfluve relief is greatest; and during waning 
development (when the incision rate decreases), interfluve 
relief declines. A further reduction of t.. would be required 
for the mesoscale landforms to [xhibit transient 
(disequilibrium) behavior characterized by phase shifts 
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between the accelerating or decelerating incision, on the 
one hand, and interfiuve growth or decline on the other. 

The slope morphology for waxing, uniform, and waning 
development advanced by Penck [1972] is not predicted by 
the SPM in M5. The model hillslopes stay convex 
throughout their evolution. This is due to the low spatial 
resolution of the model and the associated numerical 

requirement to scale up the effective diffusivity of hillslope 
transport [Kooi and Beaumont, 1994]. Diffusive transport 
and inteffluve convexity therefore occur on larger scales 
than in natural systems. Higher resolution, less diffusive, 
one-dimensional model experiments of individual 
interfluves do exhibit hillslope behavior that is much 
closer to that envisaged by Penck. Model slopes develop a 
relatively greater convexity and concavity for accelerating 
and decelerating incision. To achieve dynamic equilibrium 
slopes that are straight for a constant incision rate requires 
the incorporation of smaller-scale processes [e.g., Anderson 
and Humphrey, 1990]. 

That the sediment yield from M5 (Figure 7) is out of 
phase with the tectonic mass input and does not reach the 
same amplitude follows from the phase and amplitude 
response of (15) and (16). Equation (16) shows that were 
tt, even shorter, the delay of the peak sediment yield with 
respect to the peak uplift rate would be greater than 6 m.y. 
Correspondingly, were •:1 larger, for example, for model 
landscapes with a spatial scale of 500 km, peak sediment 
yield delays of several tens of millions of years would be 
expecteA. These significant delays are anticipated for natural 
systems and should be taken into account when using the 
stratigraphic record to date tectonic events. 

Relaxation Landforms, (Davis Framework): The 
Result of Impulsive Tectonic Forcing 

A delta function or pulse of uplift rate v• = •5(t) is used 
to investigate the model behavior when tectonic forcing 
takes the form of a rapid event, faster than the response 
time. The delta function has a white spectrum, meaning 
that it contains all timescales of uplift rate tt, with equal 
magnitude. 

The assumption of rapid phases of uplift, accompanied 
by little erosion and separated by prolonged periods of 
tectonic quiescence, plays a key role in the framework of 
the classical conceptual work of Davis [1899]. It is 
particularly this assumption, at least as contained in the 
"cycle of erosion," that distinguishes his framework from 
the frameworks of Penck [1972] and Hack [1960] that 
were discussed in the previous sections. 

Illustrative model experiment. Experiment M6 
(Figures 8 and 9) illustrates the model impulse response 
(declining equilibrium of Willgoose [1994a]) for the 
nearly symmetric uplift geometry used in M2. Figure 8 
demonstrates that the impulse response shows an 
exponential-like decaying evolution. This is expected 
because for linear systems behavior (equation (12)) the 
impulse response is the derivative of the step response. 
Also, the Fourier transform of the impulse response is 
given by the transfer function (equation (14)) because 
•T (f) = 1, and (14) is the Fourier wansform of a decaying 
exponential. 

That the M6 sediment flux •s (Figure 8, top fight) 
shows an initial increase demonstrates that the linear 

macroscale model behavior is only an approximation 

(compare with Willgoose [1994b]). Initially, before the 
fluvial system has had much time to incise the average 
slope of the rivers at baselevel is at a maximum, but the 
rivers are carrying significantly under capacity because 
hillslope transport to the valleys is minimal due to lack of 
relief. Incision and growth of relief progressively enhance 
hillslope transport to the valleys, the river undercapacity 
drops, and the sediment yield increases. The Wansifion from 
growing to declining sediment yield indicates the time 
when the rivers achieve grade at baselevel for the first time. 
Subsequently, the sediment yield declines with a response 
time •:1 that is the same as in M2 because the same 
substrate and climatic conditions are used. The initially 
nonlinear systems behavior, which is the result of a finite 
erosion length scale, occurs when tectonic variations are 
more rapid than the response time of fiuvially dominated 
slope elements at baselevel. 

The evolution of the model landscape (Figure 8) exhibits 
many of the characteristics of Davis' [1899] cycle of 
erosion and is most readily understood by first considering 
the microscale and then the meso- and macroscales. In the 

initial landscape each subsystem is in disequilibrium, even 
at the microscale, because there are timescale components 
in the impulsive tectonic uplift or tilting that are shorter 
than their response time. 

The fiuvially dominated microscale segments at the 
mouths of the major rivers, where discharge is high and 
response times are smallest (equation (3)), are the first to 
achieve dynamic equilibrium. Their dynamic equilibrium is 
equivalent to grade because M6 does not include isostatic 
compensation. "Grading" of the trunk rivers starts at base- 
level and grows progressively headward in a similar way as 
in the one-dimensional experiment M 1 (Figure 1). 

Figure 9 illustrates in a qualitative way how the charac- 
teristic evolution of the fiver profile links to the mesoscale 
inteffluve evolution. At each point along the river profile 
there is a finite incision rate at t = 0. This rate increases, 
peaks, and then declines. The transition to decline coincides 
with the passage of the knickpoint separating the graded 
(declining) reaches downstream and ungraded (steepening) 
reaches upstream. Points that are located progressively 
more upstream experience this transition later and at a 
slower rate because the kniclc•int declines and its propa- 
gation rate decreases (Figure 9). Anderson [1994] describes 
a similar behavior. 

The interfluves are initially in disequilibrium under the 
step increase in incision rate at t = 0. The denudation rate 
grows with the characteristic inteffluve response time •:2. 
The relief of the inteffluves increases, reaches a maximum, 
and declines when the interfluve denudation rate is, respec- 
tively, less, equal to, and greater than the adjacent stream 
incision rate. The transition from growth to decline in 
interfluve relief occurs with a phase shift or delay with 
respect to the peak stream incision rate and is diachronous; 
that is, it occurs later farther upstream (Figures 8 and 9). 
The phase lag is the equivalent systems behavior discussed 
for the macroscale landscape in a Penckian [Penk, 1972] 
tectonic framework (Figure 8), albeit for smaller 
timescales. 

Downstream, where incision rates are greatest, inter- 
fiuves aUain dynamic equilibrium only when incision rates 
and relief have declined (Figure 9), i.e., significantly after 
the knickpoint passes. In contrast, upstream, where 
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incision rates are small, dynamic equilibrium may be 
approximately achieved, even before the incision rate and 
relief are maximum. 

When the interfiuves farthest upstream have achieved 
dynamic equilibrium, relief declines at all scales. As 
denudation rates continue to decrease, the macroscale land- 
scape also achieves dynamic equilibrium and, ultimately, 
steady state when it is worn down to baselevel. 

Comparison with Davis' cycle of erosion. The 
characteristics of the "youth stage" in the cycle of erosion 
of Davis [1889, 1899] are aggressive, headward cutting, 
together with vertical incision of the whole drainage 
network, rapidly increasing (mesoscale) relief, V-shaped 
valleys, and grading of the major rivers starting at 
baselevel. The "maturity stage" starts when the interfluve 
relief reaches a maximum and divides are "narrow." 

Throughout maturity, interfluve relief declines while the 
headward growth of the graded reaches of the drainage 
network continues. In "old age" all streams, valleyside 
slopes, and divide crests are graded, and the landscape is 
composed of broad and gently sloping valleys and rounded 
divides [Chorley et al., 1984]. 

In the SPM the same trinity of stages can be recognized. 
The main difference is that the transition from youth to 
maturity is diachronous for the reasons explained above and 
must therefore be defined locally. 

For the SPM an alternative, more natural distinction of 
a trinity of response stages for impulsive tectonic forcing 
would be (1) transition from stage 1 to stage 2 when all of 
the microscale landforms have achieved dynamic equilib- 
rium and (2) transition from stage 2 to stage 3 when all of 
the mesoscale landforms have achieved dynamic equilib- 
rium. These stages can also be recognized for a step change 
response in uplift rate (experiment M2, Figure 2) and are a 
general feature of tectonic forcing that includes components 
at all timescales. 

Meso- and Macroscale Model System: 
Nonlinear Behavior 

The approximately linear model behavior described so far 
occurs for symmetric uplift geometries v• that impose a 
fully integrated drainage net, draining all of the topography 
to baselevel. In this section we explore geometrically non- 
linear behavior when these conditions do not apply. The 
analysis is not systematic. Instead, results of a number of 
model experiments are presented for impulsive tectonic 
forcing, and the behavior for other temporal tectonic 
forcing histories is discussed. 

Asymmetric Uplift Geometry: Backwearing and 
Pediplanation [King, 1953,1962] and 
Importance of Fundamental Form [Brice, 1964] 

Evolution of drainage basins with strongly 
asymmetric headwaters. Experiment M7 (Figure 10) 
illustrates the relaxation from t•, = 6(t) of a plateau 
bordered on one side by an escarpment. The geometry is a 
highly asymmetric form of the wedge uplift of M6 with 
different elevation baselevels. In contrast to the overall 

downwearing of topography in M6 (Figure 9), the 
landscape in M7 decays to a planated state by backwearing 
or retreat of the initial escarpment and planation below the 
escarpment [Kooi and Beaumont, 1994]. The planation 
surface consists of very low interfluves that separate graded 
rivers which drain at a low gradient from the foot of the 
escarpment to baselevel. 

Both the backwearing of the escarpmem and the creation 
of a low-gradient planation surface at its base describe the 
basic characteristics of the classical conceptual model of 
landform evolution of King [1953, 1962]. This evolution 
also agrees with the conceptual ideas of Ollier [1985] for 
the formation of the "Great Escarpments" on rifted 
continental margins following rifting of a high-elevation 
continent [Kooi and Beaumont, 1994; Gilchrist et al., 
1994]. 

An essential condition for model escarpments to retreat 
in a uniform substrate is that the top of the escarpment be 
maintained as a drainage divide, separating the plateau 
drainage basin from the drainage system on and below the 
escarpment, so that retreat, drainage capture, and divide 
migration occur in concert. Isostatic uplift [Gilchrist and 
Summerfield, 1990] helps satisfy this condition because it 
causes the plateau • tilt away from the escarpment in re- 
sponse to the denudational unloading [Kooi and 
Beaumont, 1994]. Escarpment retreat in the model is 
further enhanced when hillslope transport is less efficient 
than fluvial transport, a condition found in semiarid 
climate regions or regions which have low weathering rates 
but significant long-term runoff. This particular climatic 
control of model escarpment evolution is compatible with 
the fact that King's [1953, 1962] ideas were strongly 
influenced by the landscapes of southern Africa, which 
appear to match these conditions. 

However, other experiments show that the SPM does 
not support King's [1953, 1962] notion that a second 
pulse of relative baselevel fall causes a new scarp to form, 
recede, and consume the older pediplain above it. In 
contrast to King, who thought that the upland above the 
new escarpment would evolve at a higher elevation but in a 

Figure 7. Model response for intermediate tectonic forcing (experiment M5). Tectonic forcing •T, 
normalized b?L•_ts maximum value, consists of (l+cos2n't/•;1)• -ax/2, where •;1 is the response 
time. Here •• and the geometry are the same as those in M2. Landscape evolution (middle) shows 
increasing and declining__topography and relief. The corresponding integrated sediment flux evolution, 
•s, normalized by •/•, is shown as top fight. Dots indicate the current value of the tectonic forcing 
function. Mesoscale topographic evolution for cross-section AA' (middle) is shown at bottom left for the 
same times displayed in the landscape evolution. The phases of growing (waxing) and declining (waning) 
relief are shown separately. 
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manner otherwise unaffected by such a rejuvenation, the 
model (Figure 11) predicts that a newly established 
escarpment at baselevel becomes heavily dissected by the 
rivers that drain over it. The new escarpment and the 
pediplain above it evolve more by downwearing than by 
backwearing. A resistant caprock at the top of the new 
escarpment does not prevent its destruction by incision 
unless this caprock is essentially unerodible by fluvial 
processes. Only when the rivers that drain the higher 
escarpment are deflected parallel to its base and the new 
escarpment top is also a drainage divide will the new 
escarpment retreat without decline. This model behavior 
also suggests that a new escarpment would be preserved 
when the periplain above it has a poorly developed or an 
internal drainage system. However, this behavior also 
implies that the mass waste from the upland escarpment 
would not be transported through to baselevel and that this 
escarpment would be gradually buried in its own waste and 
evolve by diffusive decline. We conclude that although 
backwearing and pedimentation is a basic mode of landform 
evolution in the SPM, King's [1953, 1962] "landscape 
cycle" only occurs under special circumstances. 

Evolution of drainage basins with symmetric 
headwaters. Experiment M8 (Figure 11) also shows the 
general example of the relaxation of a plateau and 
escarpment configuration as in M7 but with an inland 
drainage divide, such that the upland drainage is, in part, 
toward and over the escarpment. Otherwise, the controls are 
the same as for M7 (Table 1). The escarpment becomes 
heavily dissected, long trunk rivers and interfluves develop, 
and in each of the valleys the initial escarpmem degrades to 
a knickpoint that migrates upstream toward the major 
inland divide while the reaches downstream of the 

knickpoints become graded. The model landscape passes 
through the same stages as M6 and evolves more by Davis 
[1889] type downwearing than by King [1953, 1962] type 
backwearing. However, the downwearing and gradual 
removal of the interfluves between the inland divide and 

baselevel cause a new escarpment to grow at the inland 
divide. This new escarpment subsequently starts to retreat 
in the same way as the escarpment in M7. 

Comparison of M8 and M7 demonstrates that subtle dif- 
ferences in the uplift geometry, and consequently, in the 
initial inherited landscape, can result in dramatically 
different styles of landscape evolution when these 
differences also imply large changes in the associated 
initial drainage system. The model sensitivity to inherited 
form concurs with the ideas orBrice [1964] who suggested 
that apart from "structure, process and stage," the trio of 
controls which Davis [1889, 1899] thought all the varied 
forms of the lands depend on, a fourth control is needed 

which describes the forms of upland surfaces in early stages 
of a cycle. Brice designated this fourth control as 
"fundamental form" [e.g., Higgins, 1980]. In the model, 
fundamental or, as we prefer, inherited form, is the 
component that links such contrasting styles of landscape 
evolution as Davis' downwearing and peneplanafion and 
King's [1953, 1962] backwearing and pediplanation. 

Uplift Geometry that Imposes a Fragmented 
Drainage System' Giving Internal Thresholds 
and Complex Response 

Experiment M9 (Figure 12) is a variation on the theme 
of "inherited upland and escarpment" in which the uplift 
tt, = 6(t) and its geometry have imposed a number of 
internally drained upland basins. These drainage basins 
must ultimately communicate with baselevel, and drainage 
reorganization takes the form of episodic capture events 
that occur when local drainage divides, separating the 
escarpment drainage system from an upland drainage 
basins, are breached. These rapid reorganizations lead to a 
geometrically determined form of complex response [e.g., 
Chorley et al., 1984]. 

Figure 13 illustrates in detail the capture process for 
upland basin c (Figure 12). At 3.22 Ma, when the local 
drainage divide is breached, the upland drainage system 
becomes rapidly reoriented and the alluvium/sediment 
previously stored in the internally drained basin c starts to 
be removed. The rapid changes in discharge and sediment 
flux experienced by downstream reaches of the now 
integrated drainage system, which are still graded for 
transportation of low-sediment loads, causes a new phase 
of aggradation and regrading. Subsequently, the upland 
alluvium is progressively removed, the mass flux from 
upstream decreases, and the recently aggraded alluvium 
starts to be flushed out. Similar events take place for the 
other drainage basins and are reflected by the pulses of 
sediment delivered at baselevel (Figure 14). 

During the whole process the microscale elements in the 
trunk fiver are able to maintain approximate dynamic equi- 
librium because their response times are small (equation 
(3)), in particular for deposition which occurs with a short 
length scale, lf. The interfluves adjacent to the trunk fiver 
consequently experience baselevel changes on timescales 
that are smaller than their respective response times and are 
thrown out of dynamic equilibrium. The tributaries of the 
trunk fiver aggrade at their confluence with the trunk fiver. 
They respond to this rise in local baselevel with reduced in- 
cision, and this affects their respective interfluves. The re- 
sponses of the various tributaries and interfluves are out of 
phase because the aggradation in the trunk fiver sweeps 
headward from baselevel. The whole process is set into ac- 

Figure 10. Model response for impulsive tectonic forcing, different elevation baselevels, and an 
asymmetric uplift geometry separating drainage basins with strongly asymmetric headwaters. The results 
show relaxation of a 1-kin elevation plateau, bordered on one side by an escarpment which drops to 
baselevel over a distance of 2 km (experiment M7). Reflective boundary conditions for sediment and 
water fluxes are used on the sides perpendicular to the scarp. Baselevel at the base of the scarp has a con- 
stant elevation. The opposite higher elevation baselevel for the upland drainage basin is represented by a 
boundary that is unerodible but allows the passage of fluxes. Its elevation moves freely with isostatic 
vertical motions and represents, for example, the current baselevel of an internally drained upland basin 
that is larger than the model. 
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Table 1. Model Parameter Values 

Parameter Value 

Experiments M2 to M6 

,••f (bedro,•k) 
•sediment) 
•'R 

ir 0tock) 
• (sediment) 
./IS (M3 vertical ridge) 
If (M3 vertical ridge) 

_K•y (bedrøck) 
(sediment) 

(bedrock) 

/• (s•em) 

O. 2 m 2 / yr 
2.0m 2/yr 
O. 01m/ yr 
100 km 
1 km 
0. 02 m2 / yr 
1000 km 

Experiments M7 to M9 

O. 5 m 2 / yr 
5.0m 2/yr 
O. 01m/ yr 
100 km 
1 km 
30/on 

K s is diffusivity; KfV R is a measure of the fluvial 
sediment carrying capacity as a result of precipitation, V R; 

[ofl erodibility length scale; T e, effective elastic thickness flexural calculations. 

tion without external forcing at the moment of capture and 
therefore corresponds to an intemal threshold. 

These examples demonstrate nonlinear response from 
the geometry of tectonic uplift. Corresponding examples of 
complex model response are also seen for nonuniform 
substrates and for extrinsic forcing by climate and sea 
level. 

Incompatibility of Form' Giving Internal 
Thresholds and Complex Response 

The geometrically complex response of the models can 
be described in a wider context. Experiment M9, for 
example, illustrates complex response for an uplift 
geometry that imposes a drainage system which includes 
internal drainage and impulsive tectonic forcing. However, 
a complex response also occurs in M9 for slow and 
intermediate tectonic forcing. In general, a geometrical 
complex response will occur for any uplift geometry that 
does not impose a fury integrated drainage system that 
communicates with baselevel; this response occurs 
irrespective of the time dependence of tectonic forcing. 
This is so because model landscapes evolve toward the 
steady state for the current uplift rate and the steady state 
landscapes require a fully integrated drainage system. 
Internal drainage basins can achieve no balance between 
tectonic mass input and denudational mass output. This is 
a metastable state, and it must be resolved through drainage 
capture and the complex response. 

The remaining class of uplift geometries to be discussed 
is that in which they are asymmetric yet impose a fury 
integrated drainage net. Their behavior also includes 
drainage reorganization, particularly when the uplift is 
strongly asymmetric and the primary drainage divide is not 
at a steady state location. For example, in a strongly 
asymmetric version of the wedge uplift used in M2 to M6 
the steady state primary divide does not coincide with the 
locus of maximum uplift rate. It is, instead, displaced 
toward the center of the model and the divide will migrate 

in this direction. The displacement increases with the 
asymmetry of the uplift geometry and is independent of the 
uplift rate. 

Consider, for example, that steady state in this 
asymmetric type of model has been achieved and that the 
uplift subsequently accelerates. When the acceleration 
occurs slowly, the drainage net may remain in near steady 
state while elevations grow. In contrast, when uplift occurs 
fast enough to impose the tectonic geometry on the 
landscape, a new divide is created and an internal drainage 
basin is formed. This internal basin will, when the 
acceleration decreases below a certain threshold value, be 
captured by breaching of the new drainage divide, resulting 
in a complex response. Similar complex behavior can be 
envisaged for other temporal changes in the uplift 
geometry. 

We regard the importance of the uplift geometry in gov- 
erning the style of model behavior as a more general state- 
ment of Brice's [1964] fundamental form. Hence the role 
of fundamental (inherited) form is interpreted as an 
expression of the degree of conformity of antecedent 
topography with the new tectonic geometry. 
Nonconformity, in particular of antecedent and imposed 
drainage patterns, causes the geometrical complex 
response. 

Discussion and Conclusions 

In this paper we have undertaken a systematic analysis 
of the behavior of a SPM for tectonic forcing using a 
number of systems analysis techniques. This analysis 
indicates concordance between the model results and a broad 

range of geomorphic concepts and styles of behavior 
envisaged in classical and more contemporary geomorphic 
models concerning large-scale, long-term landform 
evolution. These concepts and models include the role of 
baselevels, grade, steady state equilibrium landforms, Davis 
[1889,1899] type (downwearing peneplanation), Penck 
[1972] type (waxing and waning development), and King 
[1953, 1962] type (escarpment retreat, pediplanation) 
landscape evolution, Hack [1960] type dynamic 
equilibrium, response times, and geometrical complex re- 
sponse. The key factors that control the integration of 
these concepts in the model framework are the nature of the 
tectonic uplift geometry and its timescales. Despite this 
integration of behavioral characteristics the results prove 
neither that the SPM nor the characteristic behavior accord 

with natural landscapes. 
Figure 15 illustrates schematically that the styles of 

landform evolution envisaged by Davis [1889, 1899], 
Penck [1972], and Hack [1960] correspond to subdomains 
of the behavior of the SPM when it behaves linearly. 
Hack's dynamic equilibrium landforms occur for t•, >> 
and are characterized by a dynamic equilibrium state at all 
spatial scales. Landform evolution envisaged by Penck 
corresponds to values of t.. that are of the order of ,• or 1 • . 

'2. The macroscale landscape •s therefore •n a transient 
(disequilibrium) state, and either the microscale ( 
or both the micro- and mesoscale ( •'p -- •'2) landforms are 
in dynamic equilibrium. Penck's description of slope 
development concentrated in particular on ,•, -- '2. Davis' 
decaying landforms following impulsive tectonic forcing 
evolve through the complete range of model states. These 
states start with transient landforms at all scales, after 
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Figure 13. Detailed illustration of the capture of upland drainage basin c and the resulting complex 
response of the trunk fiver. (See Figure 12 for location of the area displayed.) Lines indicate the drainage 
net. Light and dark shading denote alluvium and bedrock substrate, respectively. 

which progressively larger landform elements achieve 
dynamic equilibrium (in a diachronous way), until, 
ultimately, the entire landscape approaches the steady state 
peneplain. 

It is not surprising that the cyclic and historical concep- 
tual models of Davis [1889, 1899] and Penck [1972] 
correspond to conditions for which the SPM behaves 
linearly. Cyclic refers to the characteristic that both the 
tectonic forcing and the landforms evolve through patterns 
that are recurrent, and historical implies that within each 
cycle the landforms evolve through characteristic stages 
that are readily predictable as a function of time, or at least, 
form a progression. 

The deterministic nature of these conceptual models is 
compatible with linear systems behavior for cyclic forcing. 
However, the SPM also demonstrated the importance of 

5 

3 
$ 2 

aggradation and regrading flushing out of aggraded 

of major river % alluvium 

capture of inland 
drainage basin 

i ' I ' I ß I ' I ' i ß I ' I ß 
0 2 4 6 8 

Time (My) 
Figure 14. Integrated sediment flux ½s of M9 (Figure 
12). 

response time in determining phase shifts or delays and 
attenuation in the landform response and sediment yield in 
relation to the tectonic forcing. The current landscape and 
sediment yield is shown to be a function of both the 
current and past tectonic forcing in which the "memory" or 
"inertia" of the landscape is measured by its response time. 
Tectonic forcing at timescales shorter than the macroscale 
response time (t/, < a:l) can therefore lead to a palimpsest 
of landforms which retain information about the history of 
the external controls [Brunsden and Thornes, 1979]. 

The behavior of the SPM suggests that the cyclic and 
historical nature of the geomorphic system disappears for 
uplift geometries that lead to nonlinear behavior. Only for 
special simple conditions that cause incremental divide 
migration and drainage capture, such as King [1953, 1962] 
type escarpment retreat, can the historical approach be of 
some use. 

Further analysis is required to investigate the model 
behavior for other model controls, such as climate and sub- 
strate conditions, and to explore more extensively the effect 
of geometrical nonlinearities. Also of interest is the effect 
that nonlinear fluvial transport formulations might have on 
the model behavior. Apart from the geomorphic concepts 
discussed in this paper it is important to relate empirical 
relationships, such as those between denudation rate and 
local relief, and area and slope in drainage networks to the 
equivalent model statistics [e.g., Willgoose et al., 1991c; 
Willgoose, 1994a]. In particular, the search for model 
statistics that may discriminate between different states of 
landscape evolution (steady state, dynamic equilibrium, 
transient) is very valuable [Willgoose, 1994b]. However, 
the problem remains that the states of natural landscapes 
have to be known first in order to validate the model 
statistics. 

The richness and complexity of the model behavior may 
be enhanced when other processes, omitted in this 
formulation, are incorporated or when the modeled 
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Figure 15. Schematic illustration of the possible model states for linear model behavior expressed in 
terms of wansient (disequilibrium), dynamic equilibrium, and steady state equilibrium states for micro-, 
meso-, and macroscale landforms as a function of the timescale of tectonic forcing t.. The styles of 
landform evolution envisaged by Davis [1889, 1899], Penck [1972] and Hack [19•0] are shown to 
correspond to subdomains of the behavior of the surface processes model. The continuum of model 
system states reflects the importance of space-time linkage. 

transport processes are subdivided into their component 
processes, an approach required to model small-scale 
landforms. We believe, however, that the unifying power 
of this simple model demonstrates that the two modes of 
mass transport capture the essence of the natural system. In 
particular, the reaction component in the fluvial transport 
or an equivalent formulation is required to account for the 
effects of bedrock lithologies in cyclic time. 

Appendix: Response of a Uniform 
Gradient Segment 
Fluvial Transport 

For the uniform gradient "river" segment, length Al, (1) 
becomes 

I -Kf Al VE =-•f qr - qf + VT, (A1) 

with the various terms defined in Figure 1, and 
VE = Oh/& is the dependent variable. Multiplying by -1, 
adding v•, and dividing by Al gives 

c}S 1 V T V• 

•--• = Al(lf ) (-KfqrS - qf )- • + -- (A2) Al' 

where S = (h'- h) / Al is the gradient of the segment. 
Separating terms in Syields 

t•S K fqr S= q f v T v• (A3) 
•t + At(If) At(If) At • AI' 

A3 is of the general form 

ø30 k I (A4) 
o•t •: 

which is a first-order linear differential equation that 
describes the relationship between the input I and output 
0 of a linear filter with response time •:. Therefore 
the uniform gradient segment behaves as a linear 
system with respect to temporal forcing by qs, VT and 
vI, and adjusts its slope S with response time 
• = At{It •/Kfq r. Note that because the response time 
d•pends 6fithe dbtachability If of the substrate, it is much 
shorter for deposition than defiuclation of resistant bedrock. 

Hillslope Diffusive Transport 

Following the same procedure for (2) yields 

1 _K s - qs + VT' VE = -• AI (As) 

Multiplying by -1, adding v•, and dividing by Al gives 

s= +--' (A6) Al 2 Al Al 

which is also of the linear form (A4) with •:• = 312 / Ks. 
As expected, diffusive "hillslopes" adjust their slope with 
the standard diffusive time constant. 
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Combined Transport 

The same procedure for combined transport on a uniform 
gradient segment yields 

JS [ Kfqr + Ks IS= qf qs VT '•+ Al(lf ) A/2 J At(If) At 2 At Al 

d The from which one obtains 1 / •:us = 1 / •:• + 1 / •:us. 
response time for the combined transport tends to that of 
the fastest process. The combined response time takes this 
form because the processes act in parallel. It also explains 
why fluvial processes (which scale with At{lj•) ) dominate 
at large scales (i.e., are lo•ng range), wherea•-diffusive pro- 
cesses (which scale as Al z ) may dominate at small scales 
(i.e., short range) when If is finite. 
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