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Mechanical basis for low-angle normal faulting
in the Basin and Range province

H. J. Melosh

Lunar and Planetary Laboratory and Department of Geosciences, University of Arizona, Tucson, Arizona 85721, USA

Low-angle normal fauits seem to violate the
criterion that relates fault dip to stress orientation.
To explain such faults one must postulate a 45°
rotation of principal stress directions at mid-crustal
depths, which is difficult to understand on the basis
of previous elastic crust models. Such a stress
rotation is shown to be a natural consequence of
a low-viscosity lower crust.

DETAILED geological mapping in the Basin and Range of the
western United States has recently revealed a type of fault that,
at first sight, defies a simple mechanical explanation. Low-angle
normal faults or detachments of large areal extent have been
recognized in many areas of the Basin and Range province'~.
The large extent and extremely shallow dip of these low-angle
normal faults, or detachment surfaces, indicates that the faults
originally formed at low angles®. Where exposed, the footwall
is generally foliated to mylonitic®”’, indicating ductile strain at
mid-crustal depths. Although the hanging wall presently exhibits
a more brittle deformational style, low-angle slip probably began
at mid-crustal depths near the brittle-ductile transition.

The problem with low-angle normal faults is that observations
on rock fracture indicate that most faults form as shear fractures
at orientations of +30° to the maximum compressional stress
axis. Anderson® argued that, near the Earth’s surface, one
principal stress direction must be perpendicular to the surface
because shear stresses vanish at a free surface. Depending on
whether this perpendicular principal stress is the maximum,
minimum or intermediate stress, the resulting faults are either
normal, thrust or strike-slip with dips of 60°, 30° or 90° (vertical)
respectively. The only way low-angle normal faults can form as
shear fractures is if the principal stress directions rotate rapidly
between the surface and depths ranging from 6 to 10 km where
low-angle normal faults are believed to form. The alternative,
that low-angle normal faults represent a new type of fracture
in which the slip plane is nearly perpendicular to the maximum
compressive principal stress, is not supported by any experi-
mental evidence on rock fracture of which I am aware. But it
seems equally difficult to understand how, in a broad terrane
of relatively uniform crustal thickness, principal stress directions
can rotate by 30° or 45° between the surface and mid-crustal
depths. Where do the large shear stresses necessary to cause the
rotation come from? Recent models that treat the crust as an
elastic plate™' have shown that large principal-axis rotations
are possible in the vicinity of large compressive, flexural or shear
loads where shear stresses change rapidly, but such explanations
imply special circumstances that involve hidden sub-crustal
forces or structures.

A more general explanation of stress rotation in the Basin
and Range can be derived from the rheological structure of the
crust in this high heat-flow region. Figure 1a shows the effective
viscosity n. as a function of depth in a crust and upper mantle
extending at a mean strain rate of 2x 107'*s™" (assuming 100%
Basin and Range extension over 15 Myr; C. Chase, personal
communication) in a model crust similar to that of ref. 11. A
10-km-thick upper crust is rheologically identical to westerly
granite, a 10-km-thick lower crust acts like Maryland diabase,
and the upper mantie is dominated by olivine. Although some
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aspects of this model may be unrealistic (the effect of varying
water content is not addressed here, and the transition from
upper crust to lower crust is probably gradual, thus reducing
the viscosity peak at the top of the lower crust), the general
pattern is believed to be accurate. The mechanical implication
of this structure is shown in Fig. 1b, where the Maxwell time,
T = 1./ 1, is plotted as a function of depth (u is shear modulus).
The crust responds elastically to loads applied for time intervals
shorter than the Maxwell time, but behaves as a viscous fluid
for loads applied for longer periods. In the Basin and Range,
only the upper few kilometres of the crust behave elastically for
loads that exist for more than ~1 Myr, and in the lower part of
the crust the Maxwell time is only ~10,000 yr. These short times
are due to both the relatively high heat flow of the Basin and
Range, as rock viscosity is strongly temperature-dependent, and
also to the relatively high extensional strain rate, as the effective
viscosity also decreases with increasing strain rate (see, for
example, ref. 12).

In the Basin and Range, the crust and upper mantle can be
thought of as a thin upper layer, which behaves elastically,
grading into a lower viscous layer, which has one or more
additional elastic layers underneath. Such a crust can clearly
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FiG. 1 Rheological structure inferred for the present Basin and Range using
the thermal gradient of Smith and Bruhn'* and the rheological data of Kirby
and Kronenberg*217 for the materials indicated; a shows the viscosity as
a function of depth and b, shows the Maxwell time. Elastic moduli in the
crust are from Dziewonski et al.?2.
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not be treated as a uniform, homogeneous elastic slab. This
structure is the key to understanding the principal-stress rota-
tions apparent from low-angle normal faults. Here I show that
if the upper elastic layer is displaced horizontally with respect
to a lower elastic layer, the intervening viscous layer is subjected
to simple shear. Such displacement is a natural result of localized
faulting in the upper crust, opposed to uniform stretching in
the lower elastic layer(s). The principal stress directions in the
viscous layer thus become orientated at 45° to the vertical,
consistent with the formation of low-angle ductile faults—by
the Mohr-Coulomb failure law, brittle rocks with angles of
internal friction near 30° fail along planes at angles of +30° to
the compressive stress axis, but in ductile failure the angle is
expected to be £45°. Experimental confirmation of this expecta-
tion is, however, sketchy (T. and J. Tullis, personal communica-
tion). The principal-stress rotation between the surface and
mid-crustal depths is thus due to the change in rheology from
elastic to viscous at these depths, coupled with some differential
slip between the layers.

Analytical model of extension

It is easy to show that the principal stress directions in a
viscoelastic layer sheared between two elastic layers approach
an orientation of 45° to the vertical within a few Maxwell times
of the application of the shear. The initial stress state of any
part of the crust is generally complicated because it depends on
the history as well as the present geological circumstances of
that particular piece of crust. However, in general, within the
constraints of keeping the analysis simple, suppose that in some
region the vertical stress is o, = pgz, where z is depth, g the
acceleration due to gravity, and, for simplicity, we assume that
the density p of the crust is uniform. Let the initial horizontal
stress be o, = ko,,, where k is a constant in accordance with
observation', and the shear strain rate é. =&, is constant.
Solution of the Maxwell viscoelastic constitutive relations in
conjunction with the stress equilibrium equations shows that
the time evolution of the stresses is

Uxx(t):a-zz+(k_l)0-zzeit/r (13)
o..(1)=pgz (1b)
(1) =0 (0)e™ "+ 2né(1—e™7) (1c)

where 7 is the Maxwell time, 7= n/u, n is viscosity and u is
the elastic shear modulus.

Within a few Maxwell times, these stresses approach a steady
state in which o, = 0,, = pgz, 0. =27é,. The angle 6 between
the vertical and the maximum compressive principal stress is
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(equation 2-34 in ref. 14)

tan20 = 2% (2)

O — 0O,

as o,, approaches o,, the right-hand side of this equation
approaches infinity and 6 therefore approaches 45°, as described
(see Fig. 2). A somewhat similar idea was proposed by Bradshaw
and Zoback'®, who investigated the refraction of principal stress
directions between layers of differing viscosity, although they
did not discuss viscoelastic stress relaxation or make it clear
that differential slip across the layers is necessary. The above
result corresponds to theirs in the limit of infinite viscosity
contrast (that is, elastic layer against viscous layer).

Simple shear of a viscoelastic layer thus results in a pure shear
stress state within a few Maxwell times. The memory of any
initially different stress state is completely lost as viscous relaxa-
tion proceeds. The final state of stress at depth is thus consistent
with low-angle ductile shear faults, whose failure planes are
located at +45° to the principal stress directions, according to
the Mohr-Coulomb construction. The problem of explaining
the occurrence of low-angle normal faults in the Basin and
Range thus reduces to one of determining how the uppermost
elastic layer can slip relative to one of the deeper-lying elastic
layers, as the above analysis shows that when such slip occurs
the principal stress axes are always rotated in the intervening
viscoelastic layer.

Consider the simple model of Basin and Range extension
shown in Fig. 3. An elastic crustal block of length L and thickness
h.is underlain by a viscous lower crust of thickness h,.. Beneath
this lower crust lies stiffer upper mantle which is under sufficient
pressure that it flows in a ductile (not viscous) fashion when
stresses within it exceed its yield strength, extending at a uniform
strain rate £. The coordinate system is chosen such that the
velocity of the upper mantle relative to the upper crust is v, =
£x,so that the centre of the crustal block is stationary with
respect to the upper mantle, but the differential velocity increases
linearly with increasing distance from the block’s centre. This
is the situation expected for an extending mantle beneath a
brittle crust that cannot support large strains without fracture.
The fractures are represented by vertical breaks at x=+L/2 in
this simple model. The stress acting across these breaks is set
equal to a constant, o™, which is less than the breaking strength
of the crust. The extensional strain rate in the brittle crustal
block is essentially zero: the regional strain imposed by the
extending upper mantle is accommodated by relative motion
of crustal blocks at their edges, where the relative velocity is
Av=¢€L.

The viscous lower crust in this model, —h,. <z <0 is thus

FIG. 2 Rotation of principal stress axes in a viscoelastic material as a
function of time, derived from equations (1) and (2). After a period of ~10
Maxwell times the principal stresses rotate to an angle of 45°. The inset
shows the definition of rotation angle 6 and the short arrows illustrate the
applied stresses.
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FIG. 3 Schematic iilustration of the analytical crus-
tal-block model for Basin and Range extension. An

effectively rigid upper-crustal block is separated
from a ductile extending upper mantle by a viscous
lower crust.

Viscous Lower
Crust

5

Ductile Upper Mantle

subject to a differential velocity between its top, which is in
contact with the brittle non-extending crust and its bottom,
which is in contact with the uniformly extending mantle. The
components of the velocity field in the lower crust are determined
by the boundary conditions and the assumption that the horizon-
tal velocity gradient is linear (good for a thin lower crust):
Xz
v (x,z)=—¢é—
(0 )= -6
2>~ hi

2hlc

(3a)

v.(x,z)=¢ (3b)
where v. is determined from v, and the condition of incompress-
ibility, V- v=0. As h « L, in general v, « v,: the z-component
of velocity corresponds to a uniform thinning due to extension
that is much slower than the horizontal stretching. The viscous
(non-lithostatic) stresses developed in the lower crust may be
calculated from the velocity field by the usual constitutive rela-
tions (—h,.<z<0),

U',fx=2n—=—2né—z— (4a)
9 hlc
av, z

oL =2n——=2né (4b)

hlc

v, Jv X

le r ) = —pé-— 4c

T <8z ax) K hye (40)

Note that all the stresses are scaled by the same factor of viscosity
multiplied by the strain rate, né, so that the principal-stress
rotation angle, being a ratio (equation (2)), is independent of
either viscosity or strain rate. At the top of the lower crust, z =0,
o' is the only non-zero stress, and the principal stress axes are
rotated to 45° here. Furthermore, throughout most of the lower
crust z« x, so the principal stress axes are rotated close to 45°
everywhere except near the centre at x =0.

The shear thus developed in the lower crust exerts a basal
shear stress o, on the brittle upper crust, where o, =27é,. =

né(x/hy.). By the stress equilibrium equations, this basal shear
results in an extensional stress in the overlying brittle lithos-
phere'® because the shear stress must decrease linearly to zero
at the free surface at the top of the upper crust. The non-
lithostatic stresses in the brittle upper crust are thus (0 <z < h )

ue né Ly? 2 fit
xx:2h h 5 —x" |+ (Sa)
efffflc
oi=0 (5b)
* né( : )
xz = 3 1-—)x Sc
h]c heff ( )

where oL is the stress at the ends of the crustal block. The

horizontal stress is smallest at the ends of the crustal block and
maximum in the middle. If this stress were to cause the crustal
block to break up further, the site of the next fracture would
thus be in its middle. The shear stress in the crust declines from
oy, at the bottom to zero at the top, as it must. The vertical stress
is zero (the lithostatic stress must be added to the above stresses
to get the full stress field, but because the lithostatic stress plays
no part in controlling principal stress direction it can be safely
neglected here). Equations (5a-c¢) show that throughout most
of the upper crust o » o;, because L » h, so that principal-
axis rotations are small, and normal faults would be expected
to form in the usual 60° dip orientation in this region.

The principal stress directions for this model are shown in
Fig. 4. The length of the unfractured crustal block is 200 km
and the thickness of the upper and lower crust are 6 km and
14 km, respectively. No other parameters, such as viscosity or
strain rate, enter into the determination of the stress directions.
It is clear that in the vicinity of the ends of the crustal blocks
the orientations of the bounding faults should undergo a sharp
change as they cross the upper/lower crust boundary, changing
abruptly from the usual 60° dip in the upper crust to nearly flat
in the lower crust (assuming that faults in the ductile zone form
at +45° to the compressional axis, as predicted by Mohr-
Coulomb theory). Of course, the upper/lower crustal boundary
is actually gradational, being established by the decrease in
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Maxwell time with depth, so the orientation of the fault planes
should rotate from steep to nearly flat over some depth interval,
but the rate at which the Maxwell time declines with depth (Fig.
1b) is so high that this interval will be at most a kilometre or two.

Finite-element model of extension

Although the above analytical model displays most of the
behaviour necessary to illustrate stress rotation in the lower
crust, it may be argued that the vertical boundaries of the edges
of the crustal blocks are unrealistic, that the measured rheology
of crustal rocks is non-newtonian, and that the boundary
between upper and lower crust is artificially chosen to lie at a
fixed depth. To answer this criticism, I also present the results
of a finite-element computation designed to be as realistic a
representation of the Basin and Range crust and upper mantle
as possible.

The basic structure of this plane-strain finite-element model
of the Basin and Range extension is that of an upper and lower
crust that together are 20 km thick. The rheological model is
similar to that illustrated in Fig. 1, except that the transition
between the upper and lower crust is more gradational to avoid
the complication of the mid-crustal lithosphere in Fig. 1. The
flow laws used are from refs 12 and 17. The crust is underlain
by a stiff upper mantle that stretches homogeneously throughout
the computation. The stiffness of this layer allows it to be
modelled as a relatively thin 5 km-thick layer that is allowed to
slip freely in the x-direction, but which is constrained to zero
vertical deformation at its base. Experiments with grids as deep
as 175 km show no differences between the shallow and deep
grids, whereas the shallow grid allows much more resolution in
the horizontal direction. Freely slipping faults are introduced
at 50-km intervals in the upper crust using the recently developed
‘slippery-node’ method'®. Note that the stress axes in the vicinity
of the fault in Fig. 5 are rotated so that one principal stress is
perpendicular to the fault plane, as required by the slip condi-
tion. The model is extended at a strain rate of 2x 107"*s™!, and
the stresses that develop near the fault after 26,000 years are
plotted in Fig. 5. Only deviatoric stresses are plotted here. Such
a plot avoids problems with a mild instability in the finite-
element code known as ‘pressure checkerboarding’ (ref. 19) that
develops under the application of large viscous strains. Although

this instability limits the accuracy with which the pressure field
can be determined, it does not affect the accuracy of either the
deviatoric stresses or the displacements'®. The finite-element
grid is much broader than the region shown, minimizing the
effect of artificial (velocity) boundary conditions at its ends: the
entire grid is 400 km long and 25 km deep and contains 8 faults,
920 elements and 1,032 nodes. The section shown in Fig. 5§
focuses on the end of one crustal block.

It is clear from Fig. 5 that stresses are rotated at mid-crustal
levels. The greatest (~45°) rotation occurs at ~6 km depth
beneath the hanging wall of the steep segment of the fault,
although smaller rotations are apparent even at depths of 4 km.
The lower viscosities at depths of 7 km and deeper prevent the
development of any significant deviatoric stresses at the time of
this plot, although at earlier times 45° stress rotations occurred
at deeper levels. Any faults that follow the directions dictated
by these stress directions will thus make a sharp turn at the
brittle-ductile transition, flattening out in a manner consistent
with that inferred for the low-angle normal faults in the Basin
and Range province.

Stress and slip on the boundary faults

It may seem surprising that the horizontal stress near the fault
in Fig. 5 does not fall to zero. Although the fault surface itself
enforces a condition of zero resolved shear stress, and although
it cuts completely through the elastic part of the upper crust, a
significant horizontal stress ¢ nevertheless develops at the
fault. The ultimate origin of this stress is in the viscous lower
crust. Although the fault slips freely, the geometry of the fault
requires that a given horizontal slip must be accompanied by a
corresponding vertical slip, as open gaps cannot develop in the
Earth. But the upper-crustal block rests on a viscous substratum
that must flow from beneath the hanging wall to the footwall
to accommodate the vertical displacement (see Fig. 6). This flow
requires a stress to drive it, and this stress ultimately appears
as an additional horizontal stress ¢, which acts in the vicinity
of the end of the upper-crustal block. (Note that the development
of great topographic differences across the fault may also con-
tribute to this stress. Such stresses are ignored here as being
generally smaller than the viscous contribution and entirely
negligible if erosion and deposition outpace tectonic uplift.)
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FIG. 5 Deviatoric stresses in a finite-element model of crustal extension
26,000 years after the beginning of extension at a strain rate of 2Xx
107*® 571, The viscoelastic material obeys a power-law flow relation with
n=3 and has the following effective viscosities (at the above strain rate):
Tere=3 X 10°* Pa s between 0 and 2.5km depth, 4 X10°? Pa s from 2.5 to
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5km, 4x10°* Pa s from 5 to 7.5km, 1 x10%2 Pas from 7.5 to 10km,
6x10%°Pas from 10 to 20km, then 10%* Pa s from 20 to 25km (stiff
upper mantle, for which n=3.5). The largest symbol represents a stress
of 7.35 x107 Pa. The horizontal dashed line illustrates the trend of a fault
forming under the influence of the stress field in the lower crust at this time.
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FIG. 6 Schematic illustration of flow in the vicinity of a fault cutting an
upper-crustal block and the induced flow that results in a horizontal stress

oft associated with slip on the fault.

A simple geometrical derivation gives the following approximate

equation
2
ai;x(#’e”)m (©)
heff

In this equation it is remarkable that there is no dependence on
either fault dip or on the thickness of the lower crustal layer, a
conclusion that is supported by a number of finite-element runs
with different fault dips and crustal thickness. It was also verified
that equation (6) roughly holds when the crustal block is termin-
ated by a graben rather than by a single normal fault: for a
graben o™ is lowered by less than a factor of two.

The existence of the stress o™ at the ends of the otherwise
free upper-crustal blocks may play a primary part in determining
whether extension takes place by the creation and separation
of large crustal blocks, as in the Basin and Range, or whether
it is accommodated on many closely spaced normal faults. If
o is small when compared to the strength of the crust then
large relatively rigid blocks can be expected to develop in the
extended region, but if ¢ is much larger than the crust’s
strength then it would be expected to break up into many small
fragments. In the finite-element simulation of Fig. 5, o, was
~7x107 Pa, corresponding to a viscosity 1.y of 6x 107" Pa s.
This relatively large stress may preclude the formation of isolated
crustal blocks, which would thus require a lower viscosity. Such
a lower viscosity may have been realized by a higher thermal
gradient in the Basin and Range at the time of the major
detachment faulting than is observed today.

Conclusions

The above results from both analytical and finite-element models
illustrate the principal conclusion that it is the rheological
change between the upper and lower crust that is responsible
for the low-angle normal faults observed in the Basin and Range
province, not a special or local loading condition. The astute
reader will note that the largest stress differences are in the
brittle upper crust, not in the viscous lower crust. To explain

Induced Flow
n

Viscous
Lower Crust

eff

Ductile Upper Mantle

the occurrence of low-angle normal faults, we must suppose
that the earthquake that accompanies sudden slip on the fault
initiates near the base of the brittle crust. Displacement during
the event propagates rapidly towards the surface along a steep
fault as seen in the 1983 Borah Peak earthquake®. Further down
in the viscoelastic lower crust strain propagation may be slower
and the direction taken by the propagating rupture is either
guided into a horizontal orientation by the ambient stress field
after the seismic event or, more likely, may accumulate by
aseismic slip for a long time before the event. This may explain
the oft-cited observation that, whereas lqw-angle normal faults
seem to be common in the Basin and Range, low-angle
earthquake focal mechanisms are not.

The fact that a change in rheology can induce drastic changes
in fault orientation is not confined to the Basin and Range
probiem alone. On a much smaller scale, it is frequently observed
that when faults in competent bedded rocks cross horizons of
more deformable material, such as shale horizons or evaporite
beds, the cross-cutting faults suddenly change direction, being
‘refracted’ across the deformable bed. This refraction may be
seen as simply the result of viscoelastic stress relaxation in the
deformable bed, coupled with a small amount of shear displace-
ment between the surrounding competent units. A theory of
fault refraction along these lines has already been presented by
Bradshaw and Zoback'®,

Similarly, thrust faults are often inferred to ‘root’ in a horizon
of especially deformable rock in which their orientations become
parallel to the bedding®'. This situation is sometimes called
‘decollement’” faulting in compressional environments or
‘detachment’ faulting when extension dominates. This situation
may again be simply an example of the 45° rotation of stresses
that invariably occurs in a sheared viscoelastic layer. Stress (and
hence fault) rotation due to a rheologically weak layer is thus
a common situation in geology, and the low-angle normal faults
observed in the Basin and Range province and in metamorphic
core complexes should only be regarded as unusually large
examples of this phenomenon. O
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