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[1] Feedbacks among vegetation dynamics, pedogenesis, and topographic development
affect the “critical zone”—the living filter for Earth’s hydrologic, biogeochemical, and rock/
sediment cycles. Assessing the importance of such feedbacks, which may be particularly
pronounced in water-limited systems, remains a fundamental interdisciplinary challenge.
The sky islands of southern Arizona offer an unusually well-defined natural experiment
involving such feedbacks because mean annual precipitation varies by a factor of five over
distances of approximately 10 km in areas of similar rock type (granite) and tectonic history.
Here we compile high-resolution, spatially distributed data for Effective Energy and
Mass Transfer (EEMT: the energy available to drive bedrock weathering), above-ground
biomass, soil thickness, hillslope-scale topographic relief, and drainage density in two such
mountain ranges (Santa Catalina: SCM; Pinaleño: PM). Strong correlations exist among
vegetation-soil-topography variables, which vary nonlinearly with elevation, such that
warm, dry, low-elevation portions of these ranges are characterized by relatively low
above-ground biomass, thin soils, minimal soil organic matter, steep slopes, and high
drainage densities; conversely, cooler, wetter, higher elevations have systematically higher
biomass, thicker organic-rich soils, gentler slopes, and lower drainage densities. To test if
eco-pedo-geomorphic feedbacks drive this pattern, we developed a landscape evolution
model that couples pedogenesis and topographic development over geologic time scales,
with rates explicitly dependent on vegetation density. The model self-organizes into states
similar to those observed in SCM and PM. Our results highlight the potential importance of
eco-pedo-geomorphic feedbacks, mediated by soil thickness, in water-limited systems.
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1. Introduction

[2] Upland landscapes, i.e., those in which soil (if present)
overlies bedrock, develop in response to the local history of
tectonics and climate over time scales of thousands to
millions of years. Limitations in our understanding of how
climate influences topography stems, in part, from the exis-
tence of complex feedback relationships among vegetation
dynamics, pedogenesis, and topographic development. For
example, climate influences the vegetation cover that a given
landscape can support. More vegetation, in turn, leads to
higher colluvial sediment fluxes via an increase in bioturba-
tion [e.g., Walther et al., 2009]. All else being equal, higher
colluvial sediment fluxes lead, over time, to thinner soils. A
more humid climate, however, also tends to enhance rates of
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soil production from bedrock, potentially resulting in thicker
soils. Soil thickness, in turn, influences how much biomass a
given hillslope can support in water-limited environments
since thinner soils store less water. Addressing these com-
plex feedback relationships is central to the challenge of
understanding the “critical zone”—the living filter for
Earth’s hydrologic, biogeochemical, and rock/sediment
cycles [e.g., Chorover et al., 2011]. Quantifying these and
other feedback mechanisms among vegetation dynamics,
pedogenesis, and topographic development requires models
that incorporate the effects of vegetation density and soil
thickness explicitly in the differential equations that describe
topographic development. Some excellent initial modeling
studies have illustrated how vegetation cover can affect
rates of slope-wash and fluvial erosion and hence drainage
density [e.g., Istanbulluoglu and Bras, 2005]. However,
vegetation also influences regolith production and colluvial
transport rates in ways that have not yet been integrated into
landscape evolution models. In this paper, we present a
preliminary model for the eco-pedo-geomorphic evolution
of water-limited landscapes of southern Arizona as a first
step towards developing a comprehensive model for the
long-term coevolution of vegetation, soils, and topography
in upland landscapes generally.

2. Site Description and Prior Work

[3] Southern Arizona is home to two mountain ranges, the
Santa Catalina (SCM) and Pinaleño Mountains (PM), that
are ideal locations to study the coevolution of vegetation,
soils, and topography over geologic timescales (Figure 1).
The term “sky islands” refers to the forested areas at high
elevations surrounded by the “seas” of desert-scrub-dominated
communities at lower elevations. Both ranges are primarily
granitic in composition, and both have undergone a similar
history of extensional tectonics from the Oligocene to the
Miocene [Spencer and Reynolds, 1989;Dickinson, 1991;Davis
et al., 2004]. These ranges are relatively mature; i.e., for at
least the past 10 million years, they have not been subject

to active tectonic uplift. As such, they are in a state of
topographic decline with uplift occurring by flexural-isostatic
rebound [Pelletier, 2010a]. Mean annual precipitation in the
sky islands varies by approximately a factor of five (from
approximately 0.2 m yr�1 at approximately 1 km elevation
above sea level (asl) to 1 m yr�1 at 2.5–3.0 km asl) over a
horizontal distance of only 10 km.
[4] The elevation/climate gradients of the southern Arizona

sky islands have figured prominently in the history of ecology
[McIntosh, 1986]. Merriam [1890], for example, was the
first to document (using the sky islands of Arizona as type
examples) that the elevational zonation of vegetation was a
response of species and communities to covarying tempera-
ture and precipitation gradients [Briggs and Humphries,
2004]. Subsequently,Whittaker and Niering [1975] quantified
biomass, productivity, and species diversity across the
climate/elevation gradient of SCM. Perhaps the preeminent
plant ecologist of the late twentieth century [Brown and Sax,
2004], Whittaker recognized the unusually well-defined
natural experiment posed by the southern Arizona sky islands
and devoted much of his career to studying the climatic control
of vegetation in SCM. A key goal of this paper is to utilize the
elevation/climate gradient of the sky islands to establish trends
in soil and topographic measures, and their inter-dependences,
analogous to the trends documented byWhittaker and Niering
[1975] for vegetation density. We consider both SCM and PM
in this study to ensure that the patterns we observe are robust
across multiple ranges. It should be noted that we chose to
limit the analysis of SCM to only the granitic core of the
range since the southern forerange is comprised of banded
gneiss [e.g., Dickinson, 1991].
[5] SCM has been the subject of one other study aimed at

quantifying the climatic control of topography. Etheredge
et al. [2004] compared the drainage density in SCM to that
of the Hualapai Mountains located in northwest Arizona
approximately 500 km away. The Hualapai Mountains
have a lower drainage density, a result that Etheredge
et al. [2004] concluded was the result of more summertime
rainfall in SCM compared to the Hualapai Mountains, given
that both ranges have otherwise similar mean annual
precipitation, dominant rock type, and tectonic history.
While Etheredge et al. [2004] emphasized the differences
in topography between ranges, the focus of this paper is on
the substantial variability within ranges along the elevation/
climate gradient.

3. Empirical Analysis

3.1. Summary

[6] Before we document the methods used to quantify
trends in landscape variables across the elevation/climate
gradient, it is helpful to summarize the results of our
empirical work so that the big-picture relationships among
vegetation, soil, and topography across the climate/elevation
gradient are clear. Trends in vegetation, soils, and geomor-
phology are nonlinear across the elevation/climate gradients
of SCM and PM (Figure 2). Although there are some
differences between the two ranges (documented in detail
later in this section), both ranges show consistent variations
across the elevation/climate gradient in Effective Energy and
Mass Transfer (EEMT), above-ground (live dry) biomass
(AGB), soil thickness, hillslope-scale relief, and mean

Figure 1. Shaded-relief image of the study region in
southern Arizona, including Santa Catalina Mountains (SCM)
and Pinaleño Mountains (PM). The approximate extent of
airborne lidar coverage is shown in white polygons.
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distance-to-valley (the latter being inversely related to
drainage density [Tucker et al., 2001]). EEMT is a variable
that combines precipitation and temperature into a single
energy-based variable that Rasmussen et al. [2005] and
Pelletier and Rasmussen [2009a] showed correlates well
with rates of bedrock weathering, particularly for granitic
rocks in semi-arid environments such as SCM and PM.
Hillslope-scale relief in this paper refers to the maximum
difference in elevation between two points separated by at
most 100 m. Mean distance-to-valley is the average distance
along the path of steepest descent between each point and
the nearest valley bottom where a zone of concentrated
water flow occurs (as opposed to sheet flow or rill flow,
which are dominant on hillslopes or in hollows). Mean
distance-to-valley is important hydrologically because it
controls hydrologic partitioning; i.e., if mean distance-to-
valley is large, hillslopes are relatively long (~100 m or
more) and more precipitation that falls on the landscape
has a chance to infiltrate into soil before it reaches the valley
network. Conversely, if mean distance-to-valley is small,
hillslopes are relatively short (~10 m) and more water that
falls on the landscape tends to reach the valley bottoms
where it can be routed off the landscape more rapidly. Mean
distance-to-valley is important geomorphically because it is
a measure of the relative importance of colluvial and fluvial
process rates, with areas of lower mean distance-to-valley
characterized by a lower ratio of colluvial to fluvial erosion
rates [Tucker and Bras, 1998; Perron et al., 2008].

[7] At low elevations in SCM and PM, EEMT is low
(0–10MJm�2 yr�1), above-ground biomass (AGB) estimated
from airborne-lidar data is low (~1–10 kg m-2; i.e., approxi-
mately 1 to 1.5 orders of magnitude lower than in the high-
elevation forest), mean distance-to-valley is low (~10 m),
soils are thin (10–30 cm), and relief is moderate (approxi-
mately 20 m/100 m) (Figure 2). At high elevations, EEMT is
high (30–45MJm�2 yr�1), above-ground biomass is high
(~10–100 kg/m2),mean distance to valley is high (~100m), soils
are thick (0.7–1.0 m), and relief is moderate (20 m/100 m).
Across the gradient, above-ground biomass, mean distance-
to-valley, and soil thickness increase rapidly and nonlinearly
with increasing elevation. Relief shows a more complex
pattern, increasing modestly and then decreasing with
increasing elevation. The photos and shaded-relief images
in Figure 2 illustrate these differences visually. The upper
right-most images show an example of a well-rounded and
heavily vegetated (i.e., a Ponderosa Pine (Pinus ponderosa)
or mixed-conifer forest) hillslope drainage divide characteris-
tic of high elevation areas in SCM and PM. At high elevations,
topography tends to be of the ridge-and-ravine type with
relatively low drainage density, thick soils, and few bedrock
outcrops. At lower elevations (upper left-most images),
hillslopes are generally shorter; there is a preponderance of
desert scrub vegetation with biomass dominated by Saguaro
cacti (Carnegiea gigantean) and Palo Verde trees (Cercidium
microphyllum). Hillslopes with vertical-walled cliffs (sepa-
rated bymore gently sloping hillslope segments) and abundant

Figure 2. Schematic illustration of trends in EEMT, above-ground biomass (AGB), soil thickness, mean
distance-to-valley, and relief as functions of elevation in SCM and PM with variable units but consistently
linear Y axis scales based on empirical data presented in more detail in Figures 3–7. EEMT increases
approximately linearly with elevation. Above-ground biomass, soil thickness, and mean distance-to-valley
increase nonlinearly with elevation. Relief is relatively unchanged, increasing moderately before reaching
a maximum and then declining at highest elevation. Representative landscapes are shown at top using field
photographs and shaded-relief images of airborne-lidar DEMs.

PELLETIER ET AL.: COEVOLUTION IN SKY ISLANDS

743



natural bedrock outcrops are common. In this section, we
document the trends in vegetation, soils, and topography as a
function of elevation and slope aspect in SCM and PM using
historical climate data, airborne-lidar data, and field measure-
ments. In section 4, we present a numerical model that
reproduces the first-order patterns in the data and that illus-
trates the important role of feedback relationships among
vegetation dynamics, pedogenesis, and topographic develop-
ment in generating these patterns.

3.2. Effective Energy and Mass Transfer (EEMT)

[8] The energy available to drive bedrock weathering is a
function of water availability (since water acts as a catalyst
in many if not all weathering mechanisms), the temperature
of the available water, and primary production (which acts to
break down rock, e.g., via the mechanical action of roots, the
infusion of reduced carbon, etc.). In this study, we use
EEMT to quantify the rate of bedrock breakdown into soil.
The rate of bedrock breakdown into soil is fundamental to
the coevolution of vegetation, soils, and topography because
it controls the rate at which soil accumulates on slopes,
which in turn controls how much vegetation can be
supported on the hillslope, and the colluvial sediment flux.
Theoretical arguments based on nonequilibrium thermody-
namics suggest that EEMT is an optimal, climatically based
variable for quantitative prediction of weathering rates. The
climatic dependence of rock-weathering rates has been
shown to be more effectively predicted by EEMT than by
other individual climatic and/or resulting biotic parameters
such as mean annual temperature, mean annual precipitation,
or net primary production [Rasmussen et al., 2011].
[9] The steps required to calculate EEMT from an

input DEM and climate data have been discussed elsewhere
[i.e., Chorover et al., 2011]; hence, we outline the steps only
briefly here. EEMT is the sum of energy input via effective
precipitation (precipitation in excess of evapotranspiration),
EPPT, and net primary production, EBIO, where

EPPT ¼ ΔT �CW�Peff ; (1)

EBIO ¼ NPP � hBIO; (2)

[10] NPP is net ecosystem production of biomass, hBIO
is specific biomass energy content [22� 106 J kg-�1],
ΔT = Tambient air� 273�K, Cw is the specific heat of
water [J kg�1K�1], and Peff (net precipitation)=PPT�ET
[kgm�2 s�1]. However, because NPP and ET are not easily
mapped in some locations due to limited data, Chorover
et al. [2011] developed a multiple linear regression model
for EEMT based solely on locally modified temperature,
T (�C) (modified to account for microclimatic effects due to
topography), mean annual precipitation, P (cm), and vapor
pressure deficit, VPD (Pa), i.e., variables that are quantifiable
for most locations on Earth using readily available input
DEM and climate data. This regression combines T, P, and
VPD in a way that closely mimics variations in EPPT+EBIO.
[11] EEMT must be calculated on a sub-annual (e.g.,

monthly) basis in order to capture the effects of seasonality
in climatic variables. The EEMT calculations in this paper
were made using data from the PRISM Climate Group
at Oregon State University (http://www.prismclimate.org).
Climate data are provided at an 800 m spatial resolution

for input precipitation, minimum and maximum tempera-
ture, and at 4000 m spatial resolution for dew point temper-
ature [Daly et al., 2002]. However, PRISM climate data do
not account for localized variations in EEMT that result
from smaller spatial scale changes in hillslope gradient and
aspect as occurs within catchments. To address this issue,
these data were then combined with 10 m digital elevation
maps (DEM) in order to compute the effects of local slope
and aspect on incoming solar radiation and hence locally
modified temperature [Yang et al., 2007]. Monthly average
dew point temperatures were computed using 10 years of
monthly data (2000–2009) and converted to vapor pressure.
Precipitation, temperature, and dew point data were re-sampled
to 10 m grid using spline interpolation. Monthly solar radiation
data (direct and diffuse) were computed using ArcGIS Solar
Analyst extension and 10 m elevation data (USGS National
Elevation Dataset (NED) 1/3 Arc Second downloaded from
the National Map Seamless Server at http://seamless.usgs.gov/).
Locally modified temperature was used to compute saturated
vapor pressure, and local VPD was estimated as the difference
between saturated and actual vapor pressure. The regression
model was derived using the ISOHYS climate dataset
comprised of approximately 30 year average monthly means
for over 300 weather stations spanning all latitude and longi-
tude [IAEA, 2004; Rasmussen and Tabor, 2007]. The best fit
regression model for monthly EEMT is

EEMTm ¼ �3:13þ 0:00879 T þ 273:15ð Þ
þ0:562P þ 0:0326 T � 17:65ð Þ P � 9:0ð Þ
�0:00235VPDþ 0:00062 P � 9:0ð Þ VPD� 662ð Þ

(3)

[12] Yearly EEMT (in MJ m�2 yr�1) was calculated by
summing over the 12 monthly values.
[13] Elevation is a dominant influence on EEMT in SCM

and PM, with EEMT increasing from nearly zero to 35 MJ
m�2 yr�1 for SCM and 45 MJ m�2 yr�1 for PM (Figure 3).
Trends of mean EEMT versus elevation for north- and
south-facing slopes within each range (Figure 3a) were
computed by averaging the data in the maps in Figures 3b
and 3c using 100m elevation bins. The trend of EEMT for
the north-facing slopes of SCM (PM) is labeled as SCM-N
(PM-N), and the trend for the south-facing slopes is labeled
as SCM-S (PM-S). PM exhibits slightly lower EEMT values
for similar elevations compared to SCM, a result likely due
to the fact that PM is located farther from the dominant
summer moisture source (the Gulf of California). Mean an-
nual rainfall for SCM ranges from 0.33 to 0.95 m yr�1

according to the PRISM data of Daly et al. [2002]. PM has
a similar range (0.37 to 0.98 m yr�1), but the elevations at
which similar values occur are shifted upward by approxi-
mately 300–400 m in elevation higher than those of SCM.
At intermediate elevations (i.e., 1.5–2.3 km asl), an average
difference of approximately 10 MJ m�2 yr�1 exists between
north- and south-facing slopes or approximately 25% of the
maximum EEMT for each range. Aspect control is apparent
in the map images of Figures 3b and 3c, with north-facing
slopes having higher EEMT compared to south-facing
slopes due to their reduced radiant forcing and hence greater
moisture availability. EEMT does not vary as significantly
with slope aspect at low elevations because EEMT values
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there are low to begin with. EEMT also varies minimally
with slope aspect at high elevations also because slopes at
high elevations are less steep, on average, compared to inter-
mediate elevations.

3.3. Above-Ground Biomass

[14] Above-ground (live dry) biomass (AGB) and its
variation with EEMT are important to quantify because
vegetation cover controls rates of colluvial transport (i.e.,
more vegetation cover drives greater bioturbation) and
fluvial transport (i.e., more vegetation cover increases the
shear stress necessary to erode sediment beneath the canopy,
thereby decreasing slope-wash/fluvial erosion rates for
conditions of similar runoff). AGB is just one measure of
vegetation cover that likely controls sediment transport
rates. Sediment transport could be as closely or more
closely related to net primary productivity, leaf area index,
below-ground biomass, or the rates of change in these
quantities over time. Nevertheless, it is reasonable to use
AGB as a characteristic variable for quantifying the effect
of vegetation cover on geomorphic transport rates because
AGB is the most direct measure of how much vegetation is
on the landscape and because many vegetation parameters
correlate closely with each other in any case (e.g., AGB
and below-ground biomass are highly correlated in SCM
[e.g., Whittaker and Niering, 1975]).

[15] AGB was mapped in SCM and PM using a power-
law regression with airborne-lidar-derived mean canopy
height (MCH) following Asner et al. [2012], i.e.,

AGB ¼ a�MCHb (4)

[16] When applying equation (4), parameters a and b are
first calibrated for the study site using lidar-derived MCH
and field-surveyed AGB (in plots where biomass has been
measured for individual trees and then aggregated to obtain
the AGB of the plot). Then, equation (4) is used to estimate
AGB across the study site using lidar-derived MCH at 10 m
resolution. In this study, we used field-measured biomass
data from 79 U.S. Forest Service plots in SCM to calibrate
equation (4). We then applied equation (4) to estimate the
biomass in all areas of airborne lidar coverage in both
SCM and PM. In previous studies [e.g., Asner et al.,
2012], the exponents in equation (4) have generally been
found to be in the range of 1 to 2. Our regression yielded
a = 0.075 kg m�4.1 and b = 2.1. These values were used to
map AGB at a 10 m resolution for each range, and these data
were then averaged in 100mwide elevation bins, with north-
and south-facing slopes considered separately. Our estimates
for AGB at the lowest elevations of each range, which are
dominated by desert scrub vegetation, are gross approxima-
tions since they are based on a regression equation from the
high-elevation forest of SCM. Nevertheless, our estimates

Figure 3. (a) Plots of mean EEMT versus elevation for north- (blue curves) and south-facing
(red curves) slopes in SCM (dashed curves) and PM (solid curves). Color maps of EEMT in (b) SCM
and (c) PM. The trend of EEMT for the north-facing slopes of SCM (PM) is labeled as SCM-N
(PM-N), and the trend for the south-facing slopes is labeled as SCM-S (PM-S). Similar labels are used
in Figures 4–6.
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for AGB at low elevations are comparable to those of
Whittaker and Niering [1975].
[17] Average AGB increases nonlinearly with elevation in

both ranges from a low of a few kg m�2 to a maximum of
approximately 60 kg m�2 in SCM and 75 kg m�2 in PM
(Figure 4). An exponential relationship captures the increase
in AGB with EEMT when the data from Figures 3 and 4 are
combined, i.e.,

AGB ¼ e exp f �EEMTð Þ (5)

with e � 1 kg m�2 and f � 0.1 yr m2 MJ�1. These values
do not represent the relationship between AGB and EEMT
in either range precisely but rather represent an average of
the trends from the two ranges that is useful for relating
AGB to EEMT in the numerical model presented in section
4. At similar elevations, AGB is significantly lower in PM
compared to SCM, a result consistent with the lower MAP

(and hence EEMT) in PM compared to SCM. AGB
decreases in the highest elevations of both ranges, a result
attributable to historic wildfires (e.g., AGB maps in
Figures 4b and 4c show areas of unusually low biomass in
the locations of recent large wildfires). A century of fire
suppression has led to unusually large recent fires at the
highest elevations of both ranges where fuels have been able
to accumulate in large, spatially connected domains. Historic
wildfires have been less common at lower elevations in
both ranges because fuel loads are naturally more spatially
discontinuous at these elevations. AGB increases signifi-
cantly with increasing elevation starting at 1.5 km asl in
SCM and 2.0 km asl in PM (at EEMT values of c. 20 MJ
m�2 yr�1). Both ranges have significantly more AGB on
north-facing slopes compared to south-facing slopes, with
the greatest aspect difference occurring in PM, where
north-facing slopes at 2.5 km elevation have more than twice
the AGB as south-facing slopes. The results in Figure 4

Figure 4. (a) Plots of mean above-ground live dry biomass (AGB) versus elevation for north- and south-
facing slopes in SCM and PM. Color maps of above-ground biomass in (b) SCM and (c) PM. Shaded-
relief images of the topography within the areas of airborne lidar coverage are also shown.
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indicate that AGB in SCM and PM increases in a strongly
nonlinear way with both elevation/EEMT and that north-
facing slopes have significantly more biomass than south-
facing slopes.

3.4. Mean Distance-to-Valley

[18] To compute the distance-to-valley metric, hillslopes
and valleys must first be distinguished in high-resolution,
bare-earth DEMs. Once each pixel is identified as a hillslope
(e.g., a portion of the landscape undissected by localized
fluvial pathways) or a valley (a zone of localized, concen-
trated surface water flow), the distance from every pixel to
the nearest valley along the path of steepest descent (identi-
fied using the D8 routing algorithm) is computed to provide
a map of the distance-to-valley, a variable that is inversely
proportional to drainage density [Tucker et al., 2001]. That
map can then be averaged in 100m elevation bins to obtain
the mean distance-to-valley as a function of elevation and
slope aspect.
[19] Most existing methods for distinguishing hillslopes

and valleys in high-resolution lidar DEMs rely to one extent
or another on contributing area as a mapping criterion,
with areas of larger contributing area classified as valleys
(perhaps based on additional criteria besides contributing

area) and areas of lower contributing area classified as
hillslopes. This is problematic because it guarantees that
portions of the landscape with large contributing areas will
be classified as valleys regardless of their morphology, i.e.,
whether or not they are dissected portions of the landscape.
To solve this problem, Pelletier [2013] developed a technique
for drainage network identification that uses only contour
curvature (i.e., the curvature of contour lines) to distinguish
hillslopes from valleys. In this method, a lidar-derived bare-
earth DEM is filtered to remove small-scale noise, contour
curvature is computed, and valley heads are identified as the
areas closest to the divides where the contour curvature rises
above a user-defined threshold value (nominally 0.1 m�1).
Once valley heads are identified, a multiple-flow-direction
routing technique is used to map the valley downstream from
the valley head. Pelletier [2013] obtained accurate results
using this method for two very different landscapes (one in
SCM) using the same user-defined threshold value, thereby
demonstrating the robustness of the technique.
[20] Mean distance-to-valley increases nonlinearly with

elevation from a low value of approximately 20 m to a
maximum of approximately 130 m in SCM (Figure 5). The
highest elevations of PM continue the nonlinear trend
present in the higher elevations of SCM, with mean

Figure 5. (a) Plots of mean distance-to-valley versus elevation for north- and south-facing slopes in
SCM and PM. Color maps of distance-to-valley in the central portions of (b) SCM and (c) PM.
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distance-to-valley values reaching 200 m at the highest
elevations. The data show relatively little difference between
north- and south-facing slopes. This lack of slope-aspect
control is perhaps surprising given the strong slope-aspect
controls on EEMT and AGB, a point to which we will return
to in section 5.

3.5. Relief

[21] Topographic relief, defined as the elevation difference
between the highest and lowest pixels within a given
radius from each point, is straightforward to map using
DEMs. Relief tends to increase with scale, i.e., the distance
from each point over which the maximum and minimum
are determined; hence, a scale must be chosen for the map-
ping that is consistent with the scientific questions addressed
by the analysis. Here we use a 50 m search radius, equiva-
lent to a 100 m spatial scale, because our goal is to quantify
steepness at the hillslope scale. At scales much larger than
100 m, i.e., watershed scales, relief is primarily controlled
by the erosivity of fluvial channels since watershed-scale
relief is controlled primarily by along-channel slopes within
the fluvial network and such slopes are controlled primarily
by the resistance of the substrate to fluvial erosion. A 100 m
scale is a reasonable choice for an analysis aimed at quanti-
fying hillslope-scale relief given that the mean distance-to-
valley (a proxy for hillslope length) is ~100 m everywhere
in the study areas (Figure 5a).
[22] Average relief in SCM ranges from just below

20 m/100 m at low and high elevations to approximately
35 m/100 m at intermediate elevations (approximately
1.7 to 2.7 km asl) (Figure 6). PM shows a similar pattern,
except the range is steeper and the relief maximum occurs
at a higher elevation, i.e., 2.4 km asl in PM instead of
2.0 km asl for SCM. Relief is greater on north-facing
slopes compared to south-facing slopes at intermediate
elevations of approximately 1.8–2.6 km asl The greater steep-
ness of north-facing slopes compared with south-facing slopes
at intermediate elevations could be a result of geomorphic
processes, e.g., higher vegetation cover protecting the hillslope
from the combined effect of rain splash and slope-wash
erosion, thereby requiring steeper slopes to generate similar
slope-wash erosion rates on north-facing hillslopes versus
south-facing hillslopes [Yetemen et al., 2010; Dunne et al.,

2010]. However, it is difficult to rule out tectonic and structural
influences as factors controlling the aspect differences
illustrated in Figure 6. During Oligo-Miocene extension, relief
in SCM and PM was produced along low-angle detachment
faults on the south and north sides of each range, respectively.
In SCM, this resulted in south-ward tilting of the range and
the development of an extension-parallel structural fabric in
the bedrock (especially at lower elevations). Both of these
processes likely resulted in initial slopes and/or rates of soil
production that depend on slope aspect and could have played
a significant role in the development of aspect-controlled
differences in relief.

3.6. Soil Thickness

[23] Mean soil thickness, defined here as the depth to the
paralithic contact, increases nonlinearly with elevation; i.e.,
soil thickness increases gradually with elevation from
approximately 0.1–0.3 m at 1 km asl to 0.4 m at 2 km asl,
then more abruptly from 0.4 m at 2 km asl to 0.8 m at
2.4 km asl Data plotted in Figure 7 were acquired from five
north-facing sites across the elevation/climate gradient in
SCM. Data from divergent and convergent (i.e., hollow)
topographic positions were averaged to obtain a single repre-
sentative soil thickness for each site [Lybrand et al., 2011].
It should be noted that the data plotted in Figure 7 differ
slightly from those of Lybrand et al. [2011]. The difference
is related to the fact that there was some variability across
elevation sites in terms of how the depth to paralithic contact
was defined in Lybrand et al. [2011]. The data plotted in
Figure 7 represent the depth to paralithic contact defined
consistently as the depth to a consolidated Cr horizon.
[24] The empirical analysis of this section quantified the

correlations among EEMT, vegetation cover, soil thickness,
and topographic variables across the elevation/climate gradi-
ent of SCM and PM. In section 4, we introduce a numerical
model aimed at understanding the feedback relationships
that give rise to these correlations.

4. Numerical Modeling

4.1. Soil Production From Bedrock

[25] Hillslopes in upland environments evolve predomi-
nantly via a combination of bedrock weathering (which
produces regolith) and colluvial transport (which erodes it).
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Figure 7. Plot of soil thickness versus elevation on north-
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For hillslopes in arid and semi-arid environments with non-
CaCO3-rich bedrock, the physical weathering of bedrock
into regolith is typically 80% or more of total weathering
[Riebe et al., 2004; Rasmussen, 2008]. In our model, the
thickness of regolith on upland landscapes is controlled by
the long-term balance between rates of physical bedrock
weathering and erosion. This balance can be quantified as

z ¼ bþ h (6)

@b

@t
¼ U � P

cosθ
(7)

@h

@t
¼ rb

rs

P

cosθ
� E (8)

where z is the elevation of topography, b is the elevation of
the underlying weathering front or bedrock surface, h is the
regolith thickness, rb is the bedrock density, rs is the bulk
regolith density, P is the rate of bedrock recession normal
to the surface, θ is the slope angle, U is the rock uplift rate,
and E is the erosion rate [Heimsath et al., 1997; 2001;
Minasny and McBratney, 1999].
[26] Cosmogenic radionuclide (CRN) studies indicate that

the rate of bedrock recession by physical weathering normal
to the surface decays exponentially with the thickness of
overlying soil measured normal to the surface, hcosθ, i.e.,

P ¼ P0e
�h cosθ=h0 (9)

where P0 is the potential weathering or bare-bedrock reces-
sion rate and h0 is a constant equal to approximately 0.5 m
based on data from the studies of Heimsath et al. [1997,
2001]. Theoretical studies suggest that a humped relation-
ship of soil/regolith production to thickness may be appro-
priate in some cases [e.g., Anderson and Humphrey, 1989;
Strudley et al., 2006]. Recent cosmogenic radionuclide data
provide support for a humped production model [e.g.,
Heimsath et al., 2009; Wilkinson and Humphreys, 2005],
but here we use the exponential model because the func-
tional form of the humped model is still not well constrained
by available data.
[27] The value of P0 depends on climate and parent

material. Rasmussen and Tabor [2007] found that regolith
thickness on slowly eroding granitic hillslopes in the Sierra
Nevada increases exponentially with EEMT, suggesting that
rates of regolith production also increase exponentially with
EEMT, i.e.,

P0¼aeb�EEMT (10)

where a (units of m kyr�1) and b (units of m2 yr kJ�1) are
empirical coefficients. Pelletier and Rasmussen [2009a]
constrained the parameters a and b in equation (10) for gra-
nitic landscapes using published data from Riebe et al.
[2004] and obtained best-fit coefficients a = 0.037 m kyr�1

and b= 0.03 m2 yr MJ�1. The resulting values of P0 are in
the range of 0.04–0.10 m kyr�1 for a wide range of arid to
sub-humid climates, with larger values generally limited to
warm, humid climates. However, it should be emphasized
that equation (10) and the particular values of a and b used
here are not universal even for a single rock type. Regolith
production rates depend on the join/fracture density of the
rock; hence, granite with unusually high fracture densities

could be characterized by P0 values higher than 0.10 m
kyr�1 even in relatively dry climates.

4.2. Colluvial Transport

[28] Erosion on hillslopes and in low-order fluvial valleys
occurs by flowing water (e.g., slope wash and channel flow)
and colluvial processes (e.g., creep, bioturbation) if soil is
present. Erosion/deposition by colluvial processes is related
to the divergence of the flux of regolith/soil via mass conser-
vation, i.e.,

Ec ¼ r�q (11)

where Ec is the erosion/deposition rate due to colluvial
processes (defined as positive if soil is being removed) and q
is a volumetric sediment flux. Early research on modeling
colluvial transport [Culling, 1960; 1963] assumed that the flux
of soil or regolith was proportional to the slope gradient, i.e.,

q ¼ �krz (12)

where k is a colluvial transport coefficient with units of
length2 time�1. Combining equations (11) and (12) yields
the diffusion equation for soil-mantled hillslopes. As slopes
steepen, however, the linear relationship between flux and
gradient assumed in equation (12) breaks down. Roering
et al. [1999, 2004], following upon Andrews and Bucknam
[1987], proposed a nonlinear slope-dependent transport
model given by

q ¼ � krz

1� rzj j=Scð Þ2 (13)

where Sc is the critical slope gradient at which sediment flux
goes to infinity. Equations (12) and (13) are limited, how-
ever, in that they exhibit an unrealistic discontinuity in flux
as the soil thickness goes from zero to some finite value.
An alternative approach is to assume that the flux is propor-
tional to the soil thickness measured normal to the tangent of
the slope for relatively thin soils (i.e., less than ~1 m):

q ¼ � kdh cosθrz

1� rzj j=Scð Þ2 (14)

where kd has units of length
1 time�1 [Furbish et al., 2009;

Roering, 2008]. In this paper, we adopt equation (14) to
model the colluvial sediment flux based on the fact that
depth-dependent transport has been shown to lead to more
accurate predictions of soil thickness in well-constrained
field cases [e.g., Heimsath et al., 2005; Pelletier et al.,
2011]. The coupling between soil thickness and colluvial
sediment transport is included via the h dependence on the
right side of equation (12). The climatic and vegetative
control on colluvial sediment flux will be included in
equation (12) by making kd a function of EEMT and AGB.
[29] Here we assume that the h in equation (14) is the

same as the h in equation (9). This assumption is based on
the relative paucity of saprolite in the granitic soils of
SCM and PM. An alternative approach developed by Crouvi
et al. [2013] is to use the field-measured average ratio of soil
thickness to regolith thickness to scale the value of h in
equation (14) to honor the fact that the average thickness
of mobile regolith may be somewhat less than the thickness
of all regolith.
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[30] The geomorphic literature contains few quantitative
constraints on how k varies with climate. Two lines of
evidence, however, suggest that values of k increase in more
humid climates and/or in areas of higher vegetation density.
First, Hanks [2000] compiled data on values of k inferred
from the degradation of landforms of known age (e.g.,
pluvial shoreline scarps). The values of k reported by Hanks
[2000] increase systematically in more humid climates: i.e.,
k= 0.1–0.7 m2 kyr�1 in the hyperarid and arid portions of
Israel, k= 0.5–2.0 m2 kyr�1 in the semi-arid portions of the
western U.S., and k ≥ 10 m2 kyr�1 in coastal California
and Michigan. One limitation of scarp studies is that they
most often constrain the long-term values of k in cases
where an abundance of soil is available for transport. Effec-
tive diffusivity values may be lower in upland environments
where soil is supply limited. Second, Hughes et al. [2009]
inferred a near doubling of colluvial transport rates in a
landscape of moderate relief in New Zealand between the
late Pleistocene and early Holocene, coincident with a shift
to a Holocene forest ecosystem (e.g., a higher vegetation
density). The results of Hughes et al. [2009] are consistent
with a series of papers that relate the value of k directly to
vegetation density [Roering et al., 2004; Walther et al.,
2009]. Rates of sediment transport by bioturbation can be
expected to increase with increasing vegetation density
because more plants are available to drive transport [Gabet
et al., 2003].
[31] The effects of a wetter climate and/or greater

vegetation cover on rates of colluvial sediment transport
are included in the model via the equation

kd ¼ cEEMT þ dAGB (15)

where c and d are empirical coefficients. The conceptual
model underlying equation (15) is illustrated in Figure 8a.
We assume that colluvial sediment transport is driven by a
combination of creep (represented by the first term on the
right side of equation (15)) and bioturbation (represented
by the second term on the right side). Creep rates can be
expected to increase linearly with EEMT in water-limited
environments, because EEMT also increases approximately
linearly with water availability in such environments and
water/soil moisture is a necessary component of the freeze/
thaw cycles that drive creep. Rates of bioturbation-driven
sediment transport can, to first order, be expected to increase
linearly with AGB. The values of the coefficients c and d are
chosen so that equation (15) yields values for kd consistent
with values reported in the literature for a range of different
climates. Such calibration can only be done in an approxi-
mate way given our relatively imprecise knowledge of
how kd values depend on climate. Here we assume that the
value of kd has a low value of approximately 0.3 m kyr�1

at the lowest elevations in the sky islands, increasing to
approximately 3 m kyr�1 at the highest elevations. As noted
above, inferred values of k are in the range 0.1 to 1 m2 kyr�1

in arid climates such as those of the Sonoran Desert. This is
equivalent to kd values in the range of 0.1 to 1 m kyr�1,
assuming a characteristic soil thickness ~1 m. As such, we
take 0.3 m kyr�1 to be a representative low elevation values
for kd. Conversely, at high elevation/more-humid climates
we assume that kd values increase to 3 m kyr-1. This

ΕΕΜΤ
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Figure 8. Schematic illustration of climatic and vegetative control of colluvial and fluvial transport
rates in the model. (a) The rate of colluvial transport is assumed to be a superposition of a creep-driven
component (proportional to EEMT) and a bioturbation-driven component (proportional to above-ground
biomass). The coefficient of colluvial transport, kd, is calibrated to match coefficients of colluvial transport
corresponding to semi-arid locations at low elevation (where colluvial transport is assumed to be creep-
dominated) and relatively humid locations at high elevation (where colluvial transport is assumed to be
bioturbation-dominated). (b) The rate of slope-wash/fluvial transport is assumed to be an inverse function
of EEMT, broadly consistent with the trend documented by Langbein and Schumm [1958].
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value is intermediate between those of semi-arid climates
(i.e., k= 0.5–2.0 m2 kyr�1) and humid climates, e.g.,
coastal California (i.e., k= 10 m2 kyr�1) [Hanks, 2000].
Given these end-member estimates for kd at low elevations
(where creep-driven colluvial transport dominates because
biomass is low) and high elevations (where bioturbation-
driven colluvial transport dominates because biomass is
high), estimates for c and d can be determined. Values
of c and d estimated in this way were determined to be
c = 0.033 m4 MJ�1 and d = 0.05 m4 MJ�1 kyr�1.

4.3. Slope-Wash/Fluvial Transport

[32] Slope-wash/fluvial transport is the transport of sedi-
ment that occurs by water flowing over the landscape, either
as the unconcentrated sheet flow of water on hillslopes or the
concentrated flow of water in valley bottoms. Here we use
the stream-power model to quantify this type of erosion, i.e.,

Ef ¼ K
A

w
rzj j (16)

where Ef is the erosion rate due to slope-wash/fluvial
processes, K is an erodibility coefficient (units of kyr�1), A
is contributing area, and w is the effective width of flow
(equal to the pixel width, Δx, if flow is by sheet flooding
or equal to the valley bottom width if flow is confined to
the valley bottom). The linear form of the stream-power
erosion model is used here for simplicity. It should be noted
that although equation (16) is perhaps best known for its
ability to model erosion in bedrock channels by the process
of plucking, in this paper it is used to model the detachment-
limited erosion of regolith on hillslopes, in hillslope hollows,
and in low-order valleys that generally have colluvial
deposits present. High-order valleys with well-defined bedrock
channels do not occur in the model because valleys have a
maximum contributing area of 1 km2.
[33] In tributary valleys, it is often a good approximation

to assume that the valley-bottom width is proportional to a
power function of the contributing area (a proxy for dis-
charge), i.e.,

w ¼ gAi (17)

where i � 1/2 and g is a dimensionless coefficient that varies
between drainage basins [Leopold and Maddock, 1953]. In
the model results of this paper, we assume i= 1/2 and
g = 0.005. The value of g was chosen to match field measure-
ments in SCM and PM; i.e., they predict valley-bottom
widths consistent with valley widths observed in the field
in these ranges (e.g., w � 0.5 m in drainage basins with
contributing areas ~104 m2 and w � 5 m in drainage basins
with contributing areas ~1 km2). In the model, we apply
equation (16) using two different values of K: a relatively
large value that represents the resistance of regolith to
slope-wash/fluvial erosion (applied if regolith is present)
and a relatively small value (applied if regolith is not pres-
ent) that represents fluvial erosion into bedrock. The ratio
of the coefficient of erodibility of regolith to that of bedrock
is defined as F. The erosion quantified by equation (16) is
added to the erosion/deposition that occurs by colluvial
processes (i.e., equation (11)) to obtain the total erosion for
each point on the landscape. On hillslopes (where A is
low), erosion by colluvial processes dominates (i.e., the

erosion from equation (11) is greater than the erosion from
equation (16)), while in valleys, the opposite is true [Tucker
and Bras, 1998; Perron et al., 2008]. In this study, the
effects of climate on slope-wash/fluvial erosion are included
by varying the two values of K with climate in a way that
is consistent with sediment yield-climate relationships pub-
lished in the literature. It should be noted that a threshold for
detachment may be added to equation (16), but Perron et al.
[2008] found that the presence or absence of a detachment
threshold does not substantially affect the valley spacing or
drainage density produced by a landscape evolution model
that uses equation (16) [e.g., Perron et al., 2008, Figure 13].
[34] Langbein and Schumm [1958] compiled data on the

average sediment yield from small drainage basins in the
western U.S. and analyzed those data in terms of effective
precipitation. Langbein and Schumm [1958] found that
sediment yield increases, on average, with increasing mean
annual effective precipitation in the range from 0 to approx-
imately 0.3 m yr�1 (i.e., environments with desert scrub
vegetation) and then decreases with increasing mean annual
effective precipitation for values above 0.3 m yr�1 (i.e.,
environments transitional from desert scrub to grassland,
grassland, and forest). In the arid to semi-arid range of 0 to
0.3 m yr�1, vegetation cover is relatively low and increasing
precipitation has the effect of liberating more sediment and
conveying more of that sediment off the hillslope in
overland-flow producing events. As the mean annual effec-
tive precipitation increases further, however, the increasing
vegetation cover that accompanies a more humid climate
has the effect of reducing the sediment yield. For these
relatively wet climates, the tendency of vegetation to in-
crease sediment yield via rain splash detachment and runoff
from hillslopes, hillslope hollows, and low-order valleys
with colluvial deposits is negated by the effect of having
more vegetation anchoring the soil. The resistance to erosion
provided by plant cover is by far the most important control
on K in such environments, unlike in bedrock channels
where erosive power (and hence values of K) generally in-
creases with increasing mean annual precipitation. In this
study, we quantify the inverse relationship between sediment
yield and effective precipitation in an approximate way by
assuming an inverse proportionality between the slope-wash/
fluvial regolith erodibility coefficient K and EEMT, i.e.,

K ¼ K0=EEMT ; (18)

where K0 is a constant (units of m
2 MJ�1). It is not necessary

to model both sides of the peak in the Langbein-Schumm
curve because all of the portions of SCM and PM considered
in this study are subject to mean annual effective precipita-
tion in excess of approximately 0.3 m yr�1. Equation (18)
is used in the model to quantify the rate of fluvial erosion
into bedrock (if all available regolith has been removed),
but the value of K0 is decreased by the factor F to reflect
the increased resistance of bedrock to fluvial erosion
compared to regolith. The value of K0 is treated as a free
parameter in the model and is varied to produce landscapes
with drainage densities in the range of those observed in
SCM and PM for a given EEMT value. It should be noted
that other studies have questioned the Langbein-Schumm
curve in some respects [e.g.,Wilson, 1973]. However, nearly
all studies that have examined the relationship between
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sediment yield and climate have concluded that an inverse
relationship exists between sediment yield and mean annual
effective precipitation for climates with precipitation in
excess of approximately 0.3 m yr�1.

4.4. Numerical Model Implementation

[35] The numerical model solves for the topography and soil
thickness corresponding to an approximate topographic steady-
state condition driven by a prescribed uniform bedrock uplift
rate. The sky islands of southern Arizona are no longer subject
to active tectonic uplift, but bedrock does still move vertically
in response to erosional unloading and the resulting flexural-
isostatic response of the lithosphere [e.g., Pelletier, 2010a].
Near a topographic steady-state condition, the rate of rock
uplift will, by definition, be balanced by the rate of erosion.
[36] Rasmussen [2008] estimated erosion rates using 10Be

concentrations at the saprolite-bedrock interface from
divergent hillslopes in the Rincon Mountains (adjacent to
SCM and part of the Catalina-Rincon metamorphic core com-
plex) at a range of elevations. The CRN-constrained physical
erosion rates he obtained ranged from 60 to 120 g m�2 yr�1,
but two of the three samples were approximately 120 g m�2

yr�1, equivalent to a bedrock lowering rate of approximately
0.05 m kyr�1, assuming a bedrock specific gravity of 2.6. In
our model, we force the landscape with a bedrock uplift rate
of U=0.05 m kyr�1, consistent with the upper end of the
range of values obtained by Rasmussen [2008].
[37] Climate in the model is prescribed via a value of

EEMT, assumed to be uniform within the model domain.
The calculation of EEMT includes the seasonality of tempera-
ture and precipitation, but actual seasons are not resolved in
the model. In nature, EEMT varies as a function of elevation
and slope aspect (Figure 3). However, for simplicity, we
use one value for EEMT throughout the model domain.

EEMT varies relatively little over elevation ranges of less than
300 m (the maximum relief obtained in our model experi-
ments); hence, it is a reasonable approximation to assume that
EEMT is uniform at the spatial scale (i.e., ~1 km2) represented
by our model. A more complex version of the model could be
used that modifies EEMT dynamically with slope and aspect.
When applying the results of the model qualitatively to the
landscapes of SCM, areas of higher elevation have higher
EEMT, and at a given elevation, north-facing slopes have
higher EEMT compared to south-facing slopes.
[38] The numerical model domain is a 10 m/pixel 101� 201

raster grid that begins with an initially low-relief landscape
(one that barely drains water to the boundaries without
ponding) with no soil cover. The boundary conditions are
periodic in the short dimension and fixed at zero along non-
uplifting base-level boundaries in the long dimension, thus
mimicking two drainage basins separated by a central ridgeline.
The model accepts, as input, a prescribed value of EEMT,
which is varied in nine different model runs from 5 MJ m2

yr-�1 to 45 MJ m2 yr�1 in increments of 5 MJ m2 yr�1. Within
a given model run, EEMT is uniform and the model produces
characteristic topographic (i.e., mean relief and distance-to-
valley) and soil variables for that model run. Between model
runs, EEMT is varied (as a proxy for a change in the mean
elevation of the catchment) and this results in variations in
characteristic topographic and soil variables between one
model run and another. EEMT vary with aspect as well as
elevation, but since elevation is by far the stronger of the two
controls (e.g., Figure 3), it is reasonable to vary EEMT in the
model to represent different mean elevations along the eleva-
tion/climate gradient. All other parameter values are held fixed
across all model runs (Table 1); hence, all of the differences in
model output can be attributed to differences in EEMT. The
value of EEMT is used to estimate the value of AGB based

Table 1. Input Parameters of the Numerical Model

Symbol Definition
Value(s)

Basis for Value(s)(Dimensionless If No Units Given)

a Empirical coefficient relating P0 and EEMT
in granitic rocks

0.037 m kyr�1 Pelletier and Rasmussen [2009a]

b Empirical coefficient relating P0 and EEMT
in granitic rocks

0.03 m2 yr MJ�1 Pelletier and Rasmussen [2009a]

c Empirical coefficient relating kd and EEMT
in sky islands

0.033 m4 MJ�1 Empirical correlation between EEMT and
literature-based estimates of kd

d Empirical coefficient relating kd and AGB
in sky islands

0.05 m4 MJ�1 kyr�1. Empirical correlation between AGB and
literature-based estimates of kd

e empirical coefficient relating AGB and EEMT
in sky islands

1 kg m�2 Empirical correlation using lidar and EEMT
model

EEMT Effective energy and mass transfer varied from 5–45 MJ m�2 yr�1 in
increments of 5 MJ m�2 yr�1

Equation (1)

f Empirical coefficient relating AGB and EEMT
in sky islands

0.1 yr m2 MJ�1 Empirical correlation using airborne lidar
data and EEMT model

F Ratio of the slope-wash/fluvial erodibility
coefficient of regolith to that of bedrock

10 No firm basis, but model results insensitive
to this parameter

g Empirical coefficient relating width of flow in
valley bottom to contributing area

0.005 Empirical correlation to field-measured
valley-bottom widths

h0 Length scale in soil production function 0.5 m Heimsath et al. [1997; 2001]
i Empirical coefficient relating width of flow in

valley bottom to contributing area
0.5 Leopold and Maddock [1953]

K0 Empirical coefficient relating coefficient of
slope-wash/fluvial erodibility of regolith to
EEMT

0.02 m2 MJ�1 Calibrated to match observed mean distance
to valley at EEMT=10 MJ m�2 yr�1

rb/rs Density ratio of bedrock to regolith 1.8 Standard value for granitic bedrock/regolith
Sc Gradient of hillslope stability 0.7 Typical value for angle of repose
U0 Rock uplift rate 0.05 m kyr�1 Rasmussen [2008]
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on the empirical correlation in equation (5). The values of
EEMT and AGB control rates of soil production, colluvial
transport, and slope-wash/fluvial transport in the model
according to equations (10) and (15)–(18). The value of K0

was chosen to be 0.02 m2 MJ�1 (using a trial-and-error
procedure) based on the fact that this value yields a mean
distance-to-valley value that matches the measured mean
distance-to-valley at the low elevations of SCM and PM (i.e.,
at elevations corresponding to EEMT=10 MJ m�2 yr�1).
Drainage density is controlled primarily by the ratio of the
colluvial transport coefficient to the fluvial transport coefficient
[Tucker and Bras, 1998; Perron et al., 2008]. Therefore, given
a value for the colluvial transport coefficient, an appropriate
value for the fluvial transport coefficient K0 can be obtained
by varying the value of K0 until a realistic drainage density is
achieved for some reference value of EEMT as we have done.
The fact that the model reproduces realistic drainage densities/
mean distances-to-valley at EEMT=10 MJ m�2 yr�1 cannot
be considered to be a success of the model because the model
is tuned to match observed data for this value of EEMT.
However, the fact that the model reproduces the observed
nonlinear increase in mean distance-to-valley across the
EEMT gradient can be considered to be a successful match
of the model to data. The value of F (the relative erodibility
of regolith to bedrock by slope-wash/fluvial processes) was
chosen to be 10 for the results presented in this paper, but
quantitatively similar results were obtained for a range of
values of F from 10 to 100. The value for Sc was chosen to
be 0.7 (35�) based on the typical angle of repose for unconsol-
idated material. Values of Sc reported in the literature are often
higher than 0.7; hence, we reran the model with an Sc value of
0.9 to test the robustness of the results to uncertainty in this
value. The model predictions for relief, soil thickness, and
mean distance-to-valley differed by less than 10% compared
to the values obtained with Sc = 0.7.
[39] Soil production during each time step and within each

pixel is computed using Euler’s method; i.e., during each
time step, the soil thickness at the beginning of the time step
is used to compute the increase in soil thickness during that
time step due to soil production as

hi; j t þ Δtð Þ ¼ hi; j tð Þ þ Δt
rb
rs

P0

cosθ
e�h tð Þ cosθ=h0 (19)

[40] Erosion and deposition in the model is computed
using the Forward-Time-Centered-Space (FTCS) method.
The x and y components of the colluvial sediment flux in
the FTCS method are computed using the elevation and soil
thickness values at time step t via the equations

qxiþ1=2; j
¼ �kd

1

2
hiþ1;j þ hi;j
� � ziþ1;j � zi;j

Δx 1� ziþ1;j � zi;j
� �

= Δx�Scð Þ� �2� � (20)

and

qyi;jþ1=2
¼ �kd

1

2
hi;jþ1 þ hi;j
� � zi;jþ1 � zi;j

Δx 1� zi;jþ1 � zi;j
� �

= Δx�Scð Þ� �2� � (21)

[41] Fluxes computed by equations (20) and (21) are
indexed at half grid points because fluxes are not defined

at any grid point but rather as the sediment flowing between
two grid points. Conservation of mass is given by

hi;j t þ Δtð Þ ¼ hi;j tð Þ � Δt
Δx

qxiþ1=2;j
� qxi�1=2;j

� �

� Δt
Δx

qyi;jþ1=2
� qyi;j�1=2

� �
(22)

[42] To maintain stability, the model time step must be
less than (Δx)2/2k (i.e., the Courant stability criterion) for a
slope-dependent transport model (i.e., topographic diffu-
sion) and much less than that for the depth- and nonlinear-
slope-dependent model. In our model, we employed a
default time step that was one hundred times lower than this
upper limit, i.e., 0.01 (Δx)2/2kd, but we also allowed the
time step to vary dynamically such that the maximum
amount of erosion or deposition was not allowed to be
greater than a small threshold value during any time step.
More sophisticated implicit techniques are available for
solving the depth- and nonlinear-slope-dependent transport
equation that allow for longer time steps [e.g., Perron,
2011], but we found explicit time stepping to be adequate
for this project given the modest grid sizes. We verified
convergence in all cases by rerunning the model with the
threshold value set to half the value of the previous run
and verified that the difference in soil thickness and topogra-
phy near steady state between the two models with was at
most a few centimeters. Also, we varied the pixel size by a
factor of 5 and verified that the model results did not change
significantly over that range of spatial resolutions.
[43] The fluvial erosion component of the model requires

that an effective width of flow be specified for every pixel
(i.e., w in equation (16)). In tributary valleys, w is a function
of contributing area, and A can be calculated using standard
flow-routing algorithms in a manner that does not depend
sensitively on grid resolution. On hillslopes where sheet
flooding occurs, however, contributing areas depends directly
on DEM resolution. Here we use the approach of Pelletier
[2010b], who used differences in the grid-resolution depen-
dence of multiple-direction flow routing on hillslopes and in
valleys bottoms to differentiate (using a threshold value of
the grid-resolution dependence) between hillslopes (where
sheet flow is assumed to be distributed throughout each
pixel and hence the effective width of flow is equal to the
pixel width) and valley bottoms (where flow is confined and
equation (17) is used to determine the width of flow).
Adopting this or a similar approach is crucial if the goal is to
precisely model the transition from hillslopes to valleys (in
order to quantify controls on mean distance-to-valley, for
example) in a manner that is independent of grid resolution,
as discussed by Pelletier [2010b].

4.5. Model Results

[44] The model produces landscapes with relatively thin
soils and lowmean distance-to-valley for low EEMT/elevation
cases (Figure 9a for EEMT=10 MJ m�2 yr�1) and relatively
thick soils and high mean distance-to-valley for high-EEMT/
elevation cases (Figure 9b for EEMT=40 MJ m�2 yr�1). At
a given elevation, north-facing slopes have higher EEMT
compared with south-facing slopes, so model results with
higher EEMT can be used qualitatively to think about how
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landscape properties vary with slope aspect at a given eleva-
tion. The model results illustrated in Figure 9 are snapshots
of the topography and soil thickness following 10 Myr of
uplift, i.e., sufficient time for an approximate dynamic
topographic steady state to be achieved for all cases. The
model exhibits a dynamic topographic steady state because
the model exhibits autogenic cut-and-fill cycles along valley
bottoms. In the low EEMT case, slopes predicted by the model
are steep, mean distance-to-valley is low, and soils on
hillslopes are highly variable in thickness but thin on average.
As EEMT increases, slopes become progressively less steep,
mean distance-to-valley increases, and soils become thicker.
[45] Given the uncertainties inherent in the parameter

values used in the model (e.g., the relationship between
kd and climate) as well as limitations in the empirical data
(e.g., soil thickness data from only five sites across the
elevation gradient), it is difficult to determine the precise cause
and/or significance of relatively small discrepancies between

the model and the observed data. As such, we judged the
model to be a good fit based simply on the fact that it
reproduces the same range of values as the empirical data
and the same qualitative trends (i.e., linear versus nonlinear)
with elevation as the empirical data (Figure 10). The circles
in Figure 10a represent the results of nine individual model
runs with EEMT varying from 5 MJ m2 yr�1 to 45 MJ m2

yr�1 in increments of 5 MJ m2 yr�1. The trends plotted in
Figure 10b are average trends for SCM and PM (except for
soil thickness, where only data from SCM are available). As
such, they do not represent the data for either range precisely
but instead represent the average trend of the two ranges.
[46] The model predicts the correct range of soil thick-

nesses across the elevation gradient, i.e., from approximately
0.25 m to 0.8 m, but the model predicts a more linear
increase than is observed in SCM based on the limited data
available. Since erosion rates are assumed to be uniform
across the range and in balance with rock uplift, the

Figure 9. Example output of numerical model, illustrating the sensitivity of soil thickness and mean
distance-to-valley to elevation/EEMT. Color maps of topography and soil thickness for a model example
with (a) low EEMT (10 MJ m�2 yr�1) and (b) high EEMT (40 MJ m�2 yr�1). Scale bar shown in Figure 9a
also applies to Figure 9b.
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relationship between soil thickness and EEMT principally
reflects the increase in soil production rates with increasing
EEMT. Soil production increases nonlinearly with EEMT,
but soil transport also increases with EEMT, so it is not sur-
prising that soil thickness (which is the difference between
production and erosion over geologic timescales) scales more
linearly with soil thickness than soil production does.
[47] The model also predicts the correct range and

nonlinearity of mean distance-to-valley, i.e., from approxi-
mately 10 m at low elevations to >150 m at high elevations
of PM. The nonlinear trend in mean distance-to-valley is a
consequence of the superposition of two EEMT-related
trends that work in concert to lower drainage density:
increasing colluvial sediment flux with increasing EEMT
and AGB and decreasing fluvial sediment flux with increasing
EEMT. Mean distance-to-valley is controlled by the balance
between colluvial and fluvial sediment fluxes; hence, any
change that simultaneously increases colluvial sediment
flux and decreases fluvial sediment flux will drive a nonlinear
increase in mean distance to valley.
[48] Hillslope-scale relief in both the model and data

increase from a low of approximately 20 m/100 m at low
elevations to a high of approximately 40 m/100 m at inter-
mediate elevations. The trend of increasing relief with
increasing elevation/EEMT at low elevations is principally
related to the increase in mean distance-to-valley that occurs
with increasing elevation/EEMT for low elevations. For
low-elevation landscapes, the mean distance-to-valley is
significantly less than 100 m, thus increasing the mean
distance-to-valley increases relief because topographic
gradients remain similar but the distance from the divides
(local maxima) to the valleys (local minima) increases from
a value less than 100 m to a higher value, thereby increasing
the relief at the 100 m scale. Relief eventually decreases
slightly with increasing elevation/EEMT, however, because
average hillslope lengths become comparable to 100 m—
hence, any further increase in hillslope length with increas-
ing elevation/EEMT no longer increases the distance between
first-order valleys and hence the relief of each hillslope—and
because average slopes become slightly lower at higher
elevation/EEMT. Slope gradients are slightly lower at high
elevation/EEMT because sediment flux is a function of the
product of soil thickness and slope, and greater soil thickness
means that less slope is required in order for erosion by collu-
vial transport processes to balance rock uplift.

5. Discussion

[49] Before we discuss the broader implications of our
work for understanding critical zone evolution, we first
discuss some specific points related to the assumptions and
implementation of the numerical model. In the model,
regolith thickness along valley bottoms alternates between
thick and thin values (Figure 9). These oscillations are likely
associated with feedbacks between erosion rate and the
effective width of flowing water (i.e., w in equation (16))
in which widening of the valley bottom decreases stream
power (and hence erosion rate) in a positive feedback,
leading to the development of relatively wide, low-gradient
valley-bottom reaches with thick colluvium, alternating with
zones of narrower and steeper valley bottoms with thin
colluvium. Such oscillations are observed in nature [Tucker

et al., 2006]. Whether or not a model exhibits such oscilla-
tions may depend on the numerical implementation, includ-
ing the details of how the width of flow on hillslopes and in
valley bottoms is computed and how the effective width of
flow in valley bottoms is represented. In the model of this
paper, the model results are made to be independent of grid
resolution using the method of Pelletier [2010b], which
distinguishes the width of flow on hillslopes (where the
effective width of flow depends on DEM resolution) and in
valleys bottoms (where it does not). The result is a model
in which valley-bottom oscillations are observed. More
research is needed to determine the best way to represent
the effective width of flow on hillslopes and in valley
bottoms and the conditions (both in nature and in models)
under which autogenic oscillations occur along valley bottoms.
The presence or absence of autogenic oscillations is not crucial
for the science questions addressed in this paper; hence, we
leave a more detailed study of these oscillations (and how they
may or may not arise from the numerical model implementa-
tion) to a future paper.
[50] Heimsath et al. [1997] developed their soil produc-

tion function (i.e., equation (9)) to quantify the development
of mobile soil only, not saprolite. Regolith is comprised of
both mobile soil and relatively immobile saprolite, yet the
soil production function has been used in the literature to
quantify rates of both soil and regolith development,
depending on the objectives of the study. The basis for
using the soil production function to quantify regolith
development was discussed by Yoo and Mudd [2008], who
suggested a two-layer model in which equation (9) was
applied to the thickening of both soil and regolith (with
potentially different values of P0 and/or h0). Also, Lebedeva
et al. [2010] proposed a process-based regolith production
model that applies to both mobile soil and relatively immo-
bile saprolite and is consistent with the exponential form in
equation (9). The distinction between soil and regolith in
the context of equation (9) is significant only in locations
where highly weathered saprolite is a substantial component
of the regolith profile. Highly weathered saprolite is not a
substantial portion of the regolith in SCM and PM; i.e.,
regolith in the lower elevations of SCM and PM is typically
0.5 m in thickness, i.e., sufficiently thin to be subject to
creep-driven transport all the way to bedrock. On gently
sloping segments at higher elevations, a 0.3–0.5 m thick
creep-driven layer can be distinguished from a less-
transportable regolith layer below based on field observa-
tions, but at all elevations, the average regolith thickness
is < 1 m and hence transportable by landsliding or tree throw
(i.e., tree roots commonly extend to> 1 m depths).
[51] Heimsath et al. [2012] recently argued that P0 is a

function of erosion rate in addition to climate and rock
properties using data from the San Gabriel Mountains.
While their results are very intriguing, it is important to
note that areas of higher erosion rate in the San Gabriel
Mountains tend to be areas of higher elevation where mean
annual precipitation (and hence EEMT) is also greater. To
our knowledge, Heimsath et al. [2012] did not isolate the
effects of climate and erosion rate on P0; hence, there is a
possibility that their findings are consistent with a simple
dependence of P0 on climate, i.e., equation (10). It is also
important to note that areas of higher erosion rate could have
systematically different rock properties (e.g., a higher joint/
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fracture density). As such, it may not be erosion rate per se
that controls P0 but rather other variables, including fracture
density, that have long been known to control P0 but are
nonetheless difficult to quantify at present.
[52] The climate of southern Arizona has fluctuated signif-

icantly relative to the modern, especially compared with the
Last Glacial Maximum (LGM). The empirical correlations
of this paper relate process rates to present-day climates.
Given that the LGM climate was significantly cooler and
wetter, i.e., capable of supporting a pinyon-juniper woodland
at the lowest elevations of SCM and PM [Van Devender,
1990], is such a calibration valid?We believe it is valid, to first
order, given that (1) the empirical correlations used to calibrate
the model also relate process rates over geologic timescales
(e.g., k values) to modern climates and vegetation condi-
tions (e.g., EEMT and AGB), and (2) the relative change
in climate through time across the elevation gradient has
been much smaller than the absolute change; i.e., higher
elevations have been cooler and wetter than lower elevations
throughout the Quaternary. The potential problem of relic soils
is also mitigated in SCM and PM by the fact that erosion rates
are sufficiently high that soils are likely to be Holocene in
age. Bedrock lowering rates of approximately 5 cmkyr�1

[Rasmussen, 2008] (equivalent to approximately 9 cmkyr-�1

of soil erosion given a typical soil/bedrock density contrast
of 1.8) imply soil residence times of approximately 4–8 kyr
given soil thicknesses of approximately 0.4–0.8 m.
[53] Given the strong influence of aspect on EEMT and

AGB, it is perhaps surprising that mean distance-to-valley
shows almost no dependence on aspect. One reason for
this could be mutually offsetting effects of relief and soil
thickness on mean distance-to-valley. North-facing slopes
have higher relief than south-facing slopes at intermediate
elevations in SCM and PM. All else being equal, higher-
relief landscapes tend to have a smaller mean distance-to-
valley [Montgomery and Dietrich, 1988], although mean
distance-to-valley may increase with increasing relief as
landsliding become a dominant process [Oguchi, 1997]. At
the same time, higher EEMT values on north-facing slopes
likely increase soil production rates, thereby increasing
colluvial transport, which would tend to increase mean
distance-to-valley. These two effects might work in opposing
ways, resulting in minimal differences in mean distance-to-
valley with slope aspect.
[54] Our results highlight the central role played by soil

thickness in mediating the feedbacks among vegetation,
soils, and topography (Figure 11). Temperature and precipi-
tation (and their joint control on EEMT), in combination
with parent material/rock properties, control rates of soil
production. The rate of soil production, together with the
rate of erosion (which, in gradually declining mountain
ranges such as SCM and PM, is balanced by rock uplift),
controls soil thickness. Rates of rock uplift also lead to
greater relief for otherwise similar conditions, and greater
relief leads to thinner soils. Soil thickness, in turn, controls
itself via the soil-thickness dependence of the soil produc-
tion function and the positive relationship between soil
thickness and colluvial sediment flux. Greater colluvial
sediment flux, all else being equal, leads to thinner soils.
The response of soil thickness to perturbations is self-
limiting assuming an exponential production function:

thicker soils decrease soil production, thereby reducing the
local soil thickness for otherwise similar conditions. Increas-
ing soil thickness or active transport depth leads to greater
the rate of colluvial sediment transport and hence tends to
increase the distance-to-valley as more colluvial sediment
fills in low-order fluvial valleys. Increasing AGB also tends
to increase distance to valley for the same reason, but the
effect of AGB on distance to valley is also enhanced by
the fact that more AGB also reduces fluvial erosion, causing
the mean distance-to-valley to increase even more than it
would otherwise. Increasing AGB tends to reduce soil thick-
ness, since it increases colluvial sediment transport and
hence the removal of soil from the hillslope.
[55] Given the strong influence of aspect on EEMT and

AGB, it is perhaps surprising that mean distance-to-valley
shows almost no dependence on aspect. One reason for this
could be the mutually offsetting effects of relief and soil
thickness on mean distance-to-valley. North-facing slopes
have higher relief than south-facing slopes at intermediate
elevations in SCM and PM. All else being equal, higher-
relief landscapes tend to have a smaller mean distance-to-
valley [Montgomery and Dietrich, 1988], although mean
distance-to-valley may increase with increasing relief as
landsliding become a dominant process [Oguchi, 1997]. At
the same time, higher EEMT values on north-facing slopes
likely increase soil production rates, thereby increasing
colluvial transport, which would tend to increase mean
distance-to-valley. These two effects might work in opposing
ways, resulting in minimal differences in mean distance-to-
valley with slope aspect.
[56] It may seem obvious to emphasize the central role of

soil thickness in eco-pedo-geomorphic evolution, but many
landscape evolution models currently in use do not track

Climate
Temperature, Precipitation

Effective Energy and Mass Transfer
(EEMT)

Parent Material

Soil Thickness Above-ground
Biomass

Relief
Mean

Distance-to-Valley
Uplift Rate

Figure 11. Schematic diagram illustrating feedbacks among
vegetation dynamics, pedogenesis, and topographic develop-
ment assumed in the model, and how those feedbacks are ini-
tiated by the inputs of climate (temperature and precipitation),
parent material, and uplift rate. Inputs are shown in ovals,
while model variables are in rectangles. Positive relationships
are shown with blue arrows (an increase in quantity A results
in an increase in quantity B, all else being equal) and negative
relationships (and increase in A drives a decrease in B) with
red arrows.
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soil thickness explicitly nor do they attempt to quantify the
climatic controls on soil production and erosion. For some
science questions, it may be adequate to neglect variations
in soil thickness across landscapes, but the results of this
paper suggest that for many basic questions in climatic
geomorphology (e.g., how does drainage density depend
on climate?), it is necessary to explicitly track soil thickness
and quantify how soil production and erosion depend on
readily available climatic variables such as mean annual
temperature, precipitation, etc. It should also be noted that
soil thickness is just one aspect of the soil that mediates
eco-pedo-geomorphic interactions. Another important goal
of future research should be to extend this and similar
models to predict the evolution of the particle size distribu-
tion and hydrologic properties of soils in addition to their
thickness. Such models are beginning to be developed
[Crouvi et al., 2013], but more work is needed.
[57] While the model of this paper is run for the idealized

case of uniform block uplift of an initially low-relief land-
scape, the model could be modified to improve predictions
of the variations in soil thickness across real landscapes.
Pelletier and Rasmussen [2009b], for example, used a
simple model of soil production coupled with erosion by
depth-dependent colluvial transport (both modeled using
uniform parameters) to predict soil thickness across upland
hillslopes. The model of this paper includes additional feed-
backs that should improve the accuracy of such predictions.
[58] The model of this paper provides only a preliminary

quantification of the feedbacks in the critical zone; much
more work is needed. As noted in section 4, how vegetation
controls soil development and sediment transport processes
is still poorly known. At present, we can constrain the
relationship between AGB and colluvial sediment transport,
for example, only in a semi-quantitative way, i.e., using a
model that increases colluvial sediment transport coeffi-
cients with increasing EEMT and AGB over a reasonable
range (as determined by calibrations of k or kd in different
climates) and is consistent with the fact that rates of
bioturbation increase in proportion to available water (in
water-limited landscapes) and vegetation density. However,
whether AGB is the best variable for quantifying vegetation
density for the purpose of predicting colluvial sediment
transport rates is unknown and more studies aimed at
quantifying the relationship between vegetation cover and
geomorphic transport rates are needed. The role of water is
not explicitly modeled in this paper, in part because water
storage varies on the timescales of individual events, i.e.,
timescales much smaller than the variation in vegetation,
soil, or topographic development. Models are needed that
quantify the coevolution of CZ processes over geologic time
scales yet are still able to resolve individual events. The
model of this paper does not consider chemical weathering
and its impacts on the hydrologic properties of regolith that
derive from its porous media structure. Insofar as the pore
structure of the regolith impacts hydrologic partitioning to
infiltration and runoff, it might also be expected to impact
the relative importance of colluvial versus fluvial erosion.

6. Conclusions

[59] In this paper, we took advantage of the unusually
well-defined natural experiment in the coevolution of

vegetation, soils, and topography posed by the late Cenozoic
evolution of the sky islands of southern Arizona. We com-
piled high-resolution, spatially distributed data for Effective
Energy and Mass Transfer (EEMT) (i.e., the energy avail-
able to drive rock weathering), above-ground biomass, soil
thickness, hillslope-scale topographic relief, and mean
distance-to-valley in the SCM and PM, two predominantly
granitic ranges in the sky islands. We showed that strong
correlations exist among these variables such that warm,
dry, low-elevation portions of these ranges are characterized
by low biomass, thin soils, steep slopes, and low mean
distance-to-valley. Cooler, wetter, high-elevation portions
of these ranges have systematically higher biomass, thicker
soils, gentler slopes, and higher mean distance-to-valley.
Moreover, all of these variables have a nonlinear dependence
on elevation/climate. We developed a landscape evolution
model that couples vegetation growth, soil development
from bedrock, and topographic evolution by colluvial and
fluvial transport over geologic time scales. The model self-
organizes into states similar to those observed in SCM and
PM for appropriate forcing conditions, i.e., lower biomass
and mean distance-to-valley, thinner soils, and higher relief
at lower elevations compared to higher elevations. The model
provides a preliminary quantification of the feedbacks among
vegetation, soil development, and topographic evolution in
water-limited environments.
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