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Quantifying Topographic and 
Vegetation Effects on the 
Transfer of Energy and Mass 
to the Critical Zone
Craig Rasmussen,* Jon D. Pelletier, Peter A. Troch, Tyson L. 
Swetnam, and Jon Chorover
Critical zone evolution, structure, and function are driven by energy and 
mass fluxes into and through the terrestrial subsurface. We have developed 
an approach to quantifying the effective energy and mass transfer (EEMT, 
MJ m−2 yr−1) to the subsurface that accounts for local variations in topogra-
phy, water and energy balances, and primary production. Our objectives 
were to quantify how (i) local topography controls coupled energy and 
water transfer to the subsurface, and (ii) vegetation effects on local-scale 
evapotranspiration and primary production controls of energy and mass 
transfer to the critical zone, both at the pedon- to hillslope-scale resolu-
tion, in the context of quantifying controls on EEMT. The model was tested 
across a semiarid environmental gradient in southern Arizona, spanning 
desert scrub to mixed conifer ecosystems. Data indicated clear variations 
in EEMT by topography, via both aspect and local water redistribution, and 
with current vegetative cover. Key findings include: (i) greater values of 
EEMT on north-facing slopes in a given elevation zone, with a north-facing 
aspect equivalent to an ?300-m elevation gain; (ii) a power law relationship 
between aboveground biomass and EEMT, with disturbance in the form of 
stand-replacing wildfire substantially reducing estimates of EEMT; and (iii) 
improved correlation of EEMT to pedon-scale variations in critical zone struc-
ture with EEMT values that include topography. Incorporating greater levels 
of environmental variation and complexity presents an improved approach 
to estimating the transfer of energy and mass to the subsurface, which is 
important to our understanding of critical zone structure and function.

Abbreviations: AET, actual evapotranspiration; CZ, critical zone; DEM, digital elevation 
model; EEMT, effective energy and mass transfer; LAI, leaf area index; MCWI, mass con-
servative wetness index; NAIP, National Agriculture Imagery Program; NPP, net primary 
production; PET, potential evapotranspiration; PPT, precipitation; SCM, Santa Catalina 
Mountains.

The evolution, structure, and function of the critical zone (CZ), the zone 
that extends from the top of the canopy down to the groundwater, is driven by energy and 
mass fluxes into and through the terrestrial subsurface. Internal fluxes and spatial structure 
coevolve in response to the transfer and transformation of energy and mass through the 
CZ system. Quantifying these fluxes is central to understanding CZ evolution and func-
tion at both short (10−3– 102 yr) and long (103– 106 yr) time scales and to predicting the 
ability of the CZ to provide key services to society. Flux quantification represents a major 
challenge to CZ science (National Research Council, 2010), with a particular challenge in 
quantifying the relative importance of the influxes of water, C, radiation, etc., on driving 
CZ evolution and function. Placing these CZ influxes into the common currency of energy 
per unit area per unit time has shown significant promise in addressing this challenge 
across relatively “simple” landscapes, i.e., ignoring the complexities that local variations in 
topography and vegetation structure introduce into energy and mass influxes to the CZ. 
In this study, we further developed an energy metric approach to account for topographic 
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and vegetation controls on CZ energy and mass influxes at pedon- 
to hillslope-scale (e.g., 10 m pixel−1) resolution.

Recent work quantifying the transfer of energy and mass to the CZ 
via C derived from net primary production and water in excess of 
evapotranspiration indicates that these relatively simple-to-derive 
terms exhibit strong correlations with a range of CZ structural 
and functional properties (Rasmussen et al., 2011). The transfer 
term is referred to as “effective energy and mass transfer” (EEMT) 
because, while the C and water terms approximate only a fraction 
of the total energy and mass balance of CZ systems, these fluxes are 
deemed highly relevant to predicting subsurface physical, chemical, 
and biological properties. The previous applications of EEMT have 
largely been derived using relatively coarse-resolution temperature 
and precipitation data and temperature-based estimates of evapo-
transpiration that do not account for topographic and vegetative 
controls on local-scale water partitioning and primary production 
(Rasmussen, 2012; Rasmussen and Gallo, 2013; Rasmussen et al., 
2005; Rasmussen and Tabor, 2007). This technique works well 
at regional scales and for describing broad patterns of CZ local 
development when arrayed across a large climate space. However, 
to accurately model catchment- to hillslope-scale EEMT, local 
topographic and vegetative factors controlling energy, water, and C 
transfer (including lateral fluxes) must be incorporated. For exam-
ple, it is widely recognized across earth science disciplines that 
significant differences in water availability and hence CZ structure 
often occur on north- vs. south-facing hillslopes within the same 
region and elevation, particularly in water-limited environments 
(Broxton et al., 2009; Gutierrez-Jurado and Vivoni, 2013; Melton, 
1960; Pelletier et al., 2013; Poulos et al., 2012). Previous methods 
for computing EEMT did not adequately 
honor such local, microclimatic variations. 
The empirical model for calculating EEMT 
presented by Chorover et al. (2011) used 
vapor pressure deficit and topographically 
modified temperature as a means to intro-
duce topographic controls on local EEMT 
rates; however, this formulation was purely 
correlative and did not include theory 
grounded approximations of topographic 
effects on pedon- to hillslope-scale water, 
energy, and C balances.

This study addressed the overarching 
question of how topography and vegeta-
tion affect local-scale estimates of EEMT. 
Our objective, therefore, was to develop a 
methodology for calculating how (i) local 
topography controls coupled energy and 
water balances and (ii) vegetation affects 
local-scale evapotranspiration and pri-
mary production and how this variation 
affects estimates of EEMT. Unique sets of 

values for EEMT that incorporate varying levels of topographic 
and vegetation information were then compared with a simple 
metric of CZ structure—soil depth—to demonstrate the relative 
improvement in the relationship between EEMT and pedon- to 
hillslope-scale CZ structural variation imparted by incorporation 
of greater topographic complexity into the EEMT framework. The 
EEMT framework applied here is just one specific approach for 
quantifying energy and mass transfer to the CZ, but the use of 
solar radiation to modify the local temperature and vapor pressure 
deficit along with topographic controls on water redistribution 
are central and relevant to any effort to quantify how topography 
influences CZ energy and water availability.

66Conceptual Framework
The EEMT framework is built around the premise that CZ pro-
cesses and evolution are a direct function of gradient-driven fluxes 
of energy and mass, including solar radiation, C, water, and the 
mineral or sediment supply. Cycling and storage of energy and 
mass occurs through processes such as infiltration and recharge, 
primary production and C cycling, physical and chemical weath-
ering, and erosion and sediment transport. Export of energy and 
mass occurs through evapotranspiration, CO2 respiration, runoff 
and base flow, and denudation (Fig. 1). The CZ may thus be con-
ceptualized to function as an open thermodynamic system wherein 
the flux of energy and mass into and through the system drives 
internal cycling processes that result in the formation of organized 
structures. These structures optimize energy and mass storage as 
well as system export of dissipative products. Quantifying the rel-
evant influx of energy and mass provides a predictive capability 

Fig. 1. Conceptual framework characterizing major fluxes and processes in the critical zone. The 
fluxes may be quantified in terms of energy and mass balance terms, with the total energy trans-
ferred to the critical zone (ETotal) the sum of energy associated with evapotranspiration (EET), 
precipitation (EPPT), net primary production (EBIO), erosion and sediment transport (EELEV), 
geochemical gradients (EGEO), and any other energy and mass transfers Ei) Effective energy and 
mass transfer (EEMT) is equal to the net energy and mass fluxes associated with effective precipita-
tion (EePPT) and net primary production (EBIO) (modified from Rasmussen, 2012; artwork from 
Chorover et al., 2007).
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for quantifying CZ processes and structural organization under 
the hypothesis that greater energy and mass flux results in greater 
structural organization and output of dissipative products 
(Rasmussen et al., 2011).

The EEMT framework was developed from the classic soil-forming 
factor approach (Jenny, 1941) that states that soil properties are 
a function of climate, biota, relief, parent material, and landscape 
age. Rasmussen (2012) restated this as: CZ = f(T, VPD, PPT, Rn, 
C, S)tr, where CZ is the critical zone state, T is the temperature, 
VPD is the vapor pressure deficit, PPT is precipitation, Rn is net 
solar radiation, C is the carbon content, S is the mineral supply 
and sediment transport, and tr is the relative age of the system, 
which explicitly links each factor with key CZ energy and mass 
balances. Volobuyev (1964) attempted to formalize these factors 
into quantitative energy terms and stated that soil properties could 
be equated to the summation of energy and mass fluxes associ-
ated with soil development, where development refers to chemical 
alteration, structure formation, and the layering, zonation, and 
organization of the weathered regolith. The summation of these 
fluxes was stated as (Minasny et al., 2008): E = w1 + w2 + b1 + 
b2 + e1 + e2 + g + v, where E is the energy involved in soil forma-
tion, w1 is the energy of physical rock weathering, w2 is the energy 
for chemical weathering, b1 is the energy accumulating in the soil 
organic matter, b2 is the energy for soil organic matter transfor-
mation, e1 is the energy for evaporation from the soil surface, e2 
is the energy for transpiration, g is the energy losses in leaching 
of salts and fine materials, and v is the energy expended by the 
process of heat exchange between the soil and the atmosphere, 
generally negligible across the centurial to millennial time scales 
of soil formation.

Rasmussen et al. (2011) took a similar approach and derived this 
basic statement from the respective energy, water, C, and sediment 
balances that occur on the Earth’s surface, including tectonically 
forced gravity-driven sediment transport, and the geochemical 
alteration of primary and secondary mineral phases (J m−2 s−1), 
stated as

Total ET PPT BIO ELEV GEO iE E E E E E E= + + + + +å         [1]

where EET is the energy and mass flux associated with evapotrans-
piration, EPPT is the heat energy associated with precipitation 
energy and mass transfer, EBIO is the net primary productivity 
energy and mass transfer, EELEV is the potential energy associated 
with gravity-driven transport of sediment, EGEO is the geochemi-
cal potential of chemical weathering, and Ei is any other external 
energy and mass input such as dust, anthropogenic inputs, or the 
heat exchange between the soil and the atmosphere. The EET term 
by far represents the largest component of ETotal and is typically 
several orders of magnitude greater than the sum of the remain-
ing energy and mass flux terms (Phillips, 2009). However, given 
that EET represents the transfer of water and radiant energy back 

to the atmosphere, it has limited potential for performing chemi-
cal or physical work on the subsurface. Equation [1] may thus be 
restated in terms of energy and mass transferred to the subsurface 
(ESubsurface, J m−2 s−1):

Subsurface ePPT BIO ELEV GEO iE E E E E E= + + + +å  	 [2]

where the precipitation term, EePPT, denotes effective precipitation, 
which accounts for precipitation water loss to evapotranspiration. 
As noted, the EELEV and EGEO terms encompass the physical and 
chemical transfers of energy and mass associated with denudation 
and mineral transformation. In many Earth surface systems, the 
sum of these fluxes may be orders of magnitude less than the water 
and C flux terms (Phillips, 2009). Therefore, we have focused on 
the sum of energy and mass transfer associated with effective pre-
cipitation and primary production, which Rasmussen et al. (2011) 
referred to as effective energy and mass transfer (EEMT, J m−2 s−1), 
defined as:

ePPT BIOEEMT E E= +  	 [3]

where EEMT represents the summation of energy transferred to 
the subsurface CZ as the heat and mass transfer associated with 
effective precipitation (EePPT) and chemical energy associated with 
reduced C compounds derived from primary production (EBIO).

The components of EEMT (Eq. [3]) have units of joules per square 
meter per second or watts per square meter and may be calculated 
using relatively simple monthly water balance techniques (e.g., 
Arkley, 1963) and net primary production estimates (e.g., Lieth, 
1975). The value of EePPT (J m−2 s−1) is calculated as

ePPT w E Fc T= D 	  [4]

where F is the mass f lux of water available to move into and 
through the subsurface (kg m−2 s−1), cw is the specific heat of 
water (J kg−1 K−1), and DT = Tambient − Tref  (K), with Tambient 
the ambient temperature at the time of water flux and Tref set at 
273.15 K. The value of EBIO (J m−2 s−1) is calculated as

BIO BIONPPE h=  	  [5]

where NPP is the mass f lux of C as net primary production 
(kg m−2 s−1) and hBIO is the specific biomass enthalpy (J kg−1) 
fixed at a value of 22 ´ 106 J kg−1.

For the purposes of this study, we calculated and compared EEMT 
derived using three different approaches that incorporated increas-
ing levels of complexity and spatial patterns of topography and 
vegetation. The three methods were: (i) the “traditional” approach 
based on relatively simple energy and water balances and net 
primary production estimates (EEMTTRAD); (ii) a modified 
approach that captures topographic controls on energy, water, and 
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C balances (EEMTTOPO); and (iii) an approach that integrates 
both topographic controls on the water and energy balances and 
point-scale vegetation controls on surface resistance and primary 
production (EEMTTOPO-VEG).

66Methods
Study Area
The Sabino Creek watershed in the Santa Catalina Mountains 
(SCM) in southern Arizona, just outside of Tucson, served as the 
test area for model development and represents well the typical 
range of climate, vegetation, and soils associated with the Sky 
Islands of the Desert Southwest (Fig. 2 and 3). The watershed 
covers approximately 9100 ha and encompasses a steep elevation 
and, hence, environmental gradient that spans hot, dry, semiarid 
desert scrub ecosystems at elevations near 800 m asl to cool, sub-
humid, mixed conifer forests at high elevations, with a maximum 
elevation of ?2800 m asl. The underlying bedrock is dominated 
by Tertiary-aged granitic rocks at mid to upper elevations and 
Tertiary-aged mylonite, a metamorphosed granitic gneiss, at low 
to mid elevations, with sparse cover of Paleozoic metasedimen-
tary rocks at the highest elevations (Dickinson, 1992). Soils exhibit 
minimal soil development across the gradient, with the greatest 
differences being a trend from shallow (<50 cm to saprock) to 

moderately deep (100–150 cm to saprock) soils and increas-
ing organic matter content with elevation (Lybrand et al., 2011; 
Pelletier et al., 2013; Whittaker et al., 1968).

Mean annual temperature decreases from near 22°C at low eleva-
tions to a minimum near 6 to 7°C at high elevation. Mean annual 
precipitation follows an inverse pattern, with the lowest precipita-
tion amounts of 250 mm yr−1 at low elevation and an increase to 
near 800 mm yr−1 at high elevation (Fig. 3a and 3b). All elevations 
possess a bimodal precipitation regime, with an approximate 50:50 
split between winter and summer precipitation. The high-elevation 
systems above ?2000 m receive much of the winter precipitation 
as snow; however, these systems are sufficiently warm during the 
winter that they do not typically maintain a deep seasonal snow-
pack, with winter climate patterns typified by pulses of snowfall 
and subsequent melt events (Heidbuchel et al., 2013).

Disturbance in the Sabino Creek watershed largely derives from wild-
fire events, with wildfire recognized as a major driver of CZ processes 
and development in the western United States (Dennison et al., 2014; 
Holden et al., 2012; Littell et al., 2009; Westerling et al., 2003). The 
Sabino Creek watershed has been subjected to a number of fires 
during the last several decades, the most significant of which was the 
Aspen fire in 2003 that burned >7880 ha in the watershed or roughly 
87% of the catchment area (Magirl et al., 2007). Burn severity maps 

Fig. 2. Location of the Sabino Creek watershed in the Santa Catalina Mountains in southern Arizona. The watershed covers >9100 ha and spans an 
elevation gradient ranging from 580 m to 2800 m asl.
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derived from pre- and post-burn LandSat imagery (http://www.
fs.usda.gov/detail/r3/landmanagement/gis/?cid=stelprdb5208076) 
indicated only ?760 ha of severe burn, or 8% of the catchment, with 
3150 ha, or 35% of catchment area, of low severity to no burn (Fig. 3f). 
The levels of burn severity documented for the Aspen fire were used 
as a metric for characterizing disturbance effects on EEMT.

A high-resolution (1 m pixel−1 resolution) LiDAR data set (Pima 
Association of Governments, http://www.pagnet.org) for the SCM 
was used as the base set of elevation data for climate and topo-
graphic modeling. Data products extracted from the LiDAR data 
included both the bare earth digital elevation model (DEM) and 
canopy height. The LiDAR data were rescaled to a 10 m pixel−1 
resolution to facilitate rapid computational processing across the 
relatively large study area.

The three methods for calculating EEMT included: (i) EEMTTRAD 
based on simple energy and water balances and net primary produc-
tion estimates; (ii) EEMTTOPO that captures topographic controls 
on energy, water, and C balances; and (iii) EEMTTOPO-VEG that 
integrates both topographic controls on water and energy balances 
and vegetation controls on surface resistance and primary produc-
tion. All of these calculations rely on a base set of climate, solar 
radiation, and leaf area index data. Evapotranspiration and net pri-
mary production for each method vary with: (i) EEMTTRAD relying 
on simple empirical approximations based on climate parameters; 
(ii) EEMTTOPO using a Penman–Monteith approach to estimate 
potential evapotranspiration coupled with a Budyko curve to approx-
imate actual evapotranspiration and empirical estimates of primary 
production based on topography; and (iii) EEMTTOPO-VEG imple-
menting a full Penman–Monteith approach to calculating actual 
evapotranspiration that includes pixel-based measures of surface and 
aerodynamic resistance and a canopy-height-based approximation 
of primary production. The parameters used for each approach are 
outlined below.

Local Climate, Solar Radiation, and 
Leaf Area Data
Local climate data were derived for a set of remote area weather sta-
tions managed by the US Forest Service (http://www.raws.dri.edu/). 
Data from three stations in the Santa Catalina Mountains and adja-
cent Rincon Mountains that span the full elevation gradient were 
processed for mean monthly minimum and maximum temperatures, 
precipitation, relative humidity, and wind speed. The three stations, 
Saguaro at 800 m asl, Soller Spring at 2300 m asl, and Rincon at 
2512 m asl, have an average period of record of 12 yr, providing a 
reasonable climatological data set. Climate parameters including 
temperature, precipitation, relative humidity, and wind speed were 
regressed relative to elevation on a monthly basis, with most param-
eters exhibiting a linear relationship to elevation (Supplemental Fig. 
S1). These relationships were used to calculate mean monthly clima-
tological norms for each 10-m pixel in the study area and served as 
the base climate data for the modeling detailed below.

Solar Radiation
Total incoming shortwave solar radiation (direct and diffuse) was 
calculated on a monthly basis using the 10-m DEM and the solar 
radiation routine in ArcGIS 10.0 that accounts for variations in lati-
tude, elevation, and aspect. The applied algorithm does not account 
for topographic shielding and shadowing and thus may overestimate 
radiation in certain portions of the landscape, particularly those 
associated with south-facing convergent areas that may experience 
morning shading from adjacent north-facing slopes (Beaudette and 
O’Geen, 2009). Incoming radiation was calculated incorporating 
topographic variation in slope and aspect, Stopo, as well as for a free 
flat surface with constant values of zero for slope and aspect, Sflat. 
The ratio of the two, Si = Stopo/Sflat, was used for modeling topo-
graphic modifications of temperature (see below). Calculations for 
both Stopo and Sflat were performed on a monthly basis using a 2-h 
time step, a sky view of 200 pixels, 32 calculation directions, eight 
zenith and azimuth divisions, and uniform clear sky conditions.

Leaf Area Index
A leaf area index (LAI) was derived using a vegetation index 
approach that predicts LAI using a remotely sensed normalized 
difference vegetation index (NDVI). The 1 m pixel−1 resolution 
National Agriculture Imagery Program (NAIP) four-band imag-
ery data collected for all of Arizona in June of 2010 that included 
red, blue, green, and near-infrared (NIR) spectra was used as the 
base data for calculating NDVI and LAI. The NDVI was calcu-
lated from the NAIP NIR and red bands as (Huete et al., 1994) 
(NIR − Red)/(NIR + Red). The third-order polynomial function 
of Qi et al. (2000), derived for semiarid regions in southern Arizona, 
was used to calculate the LAI from the NDVI as ax3 + bx2 + c + d, 
where x is the NDVI and a, b, c, and d are 18.99, −15.24, 6.124, and 

−0.352, respectively. Calculated values for LAI ranged from 0 to 9.5 
for the study area. The LAI data were calculated at a 1 m pixel−1 reso-
lution, then resampled to the 10 m pixel−1 resolution of the DEM.

Modeled values for LAI increased from a minimum of 0.1 in 
low-elevation desert ecosystems to 9.5 in the high-elevation 
mixed conifer ecosystems (Fig. 3e). The highest values for each 
elevation occurred on north-facing slopes and in drainageways 
where topography controls the local energy and water balance 
and water available for primary production. The largest impacts 
of recent wildfire activity on the LAI were noted in the high-
elevation conifer ecosystems that experienced a high-severity, 
stand-replacing burn.

Topographically Modified Temperature
Following Moore et al. (1993), minimum, maximum, and mean 
monthly air temperatures (°C) at each pixel (Ti) were calculated 
using the local lapse rate, topographically modified solar radiation 
(Si), and LAI:

b
b lapse

max

LAI1
1

1000 LAI
i i

i i
i

z z
T T T C S

S

æ öæ öæ ö- ÷ ÷ç ç÷ç ÷ ÷= - + - -ç ç÷ç ÷ ÷÷ ç çç ÷ ÷ç çè ø è øè ø
  	 [6]

http://www.fs.usda.gov/detail/r3/landmanagement/gis/?cid=stelprdb5208076
http://www.fs.usda.gov/detail/r3/landmanagement/gis/?cid=stelprdb5208076
p:\\www
http://www.raws.dri.edu
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where Tb is the temperature (°C) at a base station; Tlapse is the 
local lapse rate (°C km−1); zi and zb are the elevation (m) of the 
pixel and base station, respectively; C is a constant equal to 1; Si is 
the ratio between direct shortwave radiation on the actual surface 
and direct shortwave radiation on a horizontal surface; LAIi is the 
pixel leaf area index; and LAImax is the maximum value for LAI, 
equal to 10.

The mean monthly minimum and maximum temperatures (Tmin 
and Tmax) were calculated using the monthly minimum and maxi-
mum temperature lapse rates derived from the climate station and 
elevation data. The low-elevation station was selected as the base 
station for determining both Tb and zb. The minimum tempera-
ture was calculated using only the minimum temperature lapse 
rate, i.e., ignoring the second term in Eq. [6], because minimum 
temperatures occur at night when there is a negligible effect of solar 
radiation or LAI on the temperature. The mean monthly tempera-
ture was calculated as the average of Tmin and Tmax.

The amount of information included in the temperature calcula-
tions varied with each EEMT modeling approach. Specifically, 
EEMTTRAD used temperature calculated using only the derived 
lapse rates; EEMTTOPO incorporated the solar radiation term 
but did not include LAI; and EEMTTOPO-VEG included all 
terms in Eq. [6].

Local Water Balance
The wetting of each pixel per month was approximated using a local 
water balance (L’vovich, 1979):

PPT SR AETW F= - = +  	 [7]

where W is pixel wetting (m s−1), PPT is the mean annual precipita-
tion, SR is surface runoff, AET is actual evapotranspiration, and 
F is the water partitioned to base flow. The F term quantifies sub-
surface wetting, a key parameter for calculating EEMT (see below), 
and represents the fraction of water with the ability to transfer heat 
energy and perform chemical and physical work in the subsur-
face. Equation [7] may be rewritten to solve for F as F = Peff − SR, 
where Peff is the effective precipitation, equivalent to PPT − AET. 
Effective precipitation is thus a key component of the water bal-
ance approach applied here and central to calculating EEMT. The 
three approaches to modeling EEMT varied in the calculation of 
Peff and specifically the calculation of the AET term, as described 
below. The length scale of precipitation and evapotranspiration 
were scaled to units of mass per unit area per unit time based on the 
density of water and the assumption that a meter of precipitation 
is equivalent to 1 m3 H2O m−2.

Evapotranspiration for Traditional Effective 
Energy and Mass Transfer
We applied three techniques for calculating the actual evapo-
transpiration that incorporate various levels of detail of 

environmental data. The original formulation of EEMT 
(Rasmussen et al., 2005) relied on a very simple water bal-
ance approach commonly used in pedologic studies wherein 
Peff was determined as the difference between monthly pre-
cipitation and potential evapotranspiration (PET) calculated 
using the Thornthwaite and Mather (1957) temperature-based 
approach. In the calculation of EEMTTRAD in this study, we 
calculated PET using Hamon’s equation (PETH) that incorpo-
rates temperature, daylight, and saturated vapor pressure (see 
Supplemental Material) and provided values nearly identical 
to the Thornthwaite–Mather approach across the study area 
(Haith and Shoemaker, 1987; Hamon, 1961).

Evapotranspiration for Topographically 
Modified Effective Energy and Mass Transfer
The modeling approach for EEMTTOPO was designed to explicitly 
incorporate topographic variations in solar radiation, tempera-
ture, wind speed, and vapor pressure deficit. Specifically, PET was 
calculated using a Penman–Montieth approach to estimate pan 
evaporation (see Supplemental Material) that was then coupled 
with an estimation of the AET using a Budyko curve (Budyko, 
1974) describing the partitioning of potential and actual evapo-
transpiration relative to the aridity index (ratio of annual PET to 
annual rainfall). Potential evapotranspiration and precipitation 
were converted to monthly values of AET (m s−1) using a Zhang–
Budyko curve that describes the climatological relationship 
between the relative partitioning of catchment-scale precipitation 
to PET and AET as (Zhang et al., 2001)

pm pm
ZB

1/
PET PET

AET PPT 1 1
PPT PPT

wwì üï ïé ùï ïæ öï ïê ú÷ï ïç ÷= + - +çí ýê ú÷ç ÷ï ïçè øê úï ïë ûï ïï ïî þ

  	 [8]

where w is an empirical constant, here set equal to 2.63 following 
Zhang et al. (2004). This catchment-scale approach to precipitation 
partitioning was then scaled to local topography based on incor-
poration of topographic redistribution of effective precipitation 
(below). It is likely that w varies with the local climate, vegetation, 
and subsurface storage regimes that span the study watershed, e.g., 
Zhang et al. (2004) determined optimum w values ranging from 
2.15 to 3.75 for temperate forest and grassland systems, respectively. 
However, for simplicity and the lack of a clear empirical means to 
assign a w value to specific ecosystems, we applied a constant value 
of w to all ecosystems.

Evapotranspiration for Topographic and 
Vegetation Modified Effective Energy 
and Mass Transfer
The approach to calculating EEMTTOPO-VEG used the Penman–
Montieth equation that includes the surface resistance term in 
the denominator and a canopy-derived estimate of aerodynamic 
resistance to provide an estimate of the actual evapotranspiration 
(AETpm) (see Supplemental Material). The aerodynamic resistance 
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term was calculated using the canopy height derived from the LiDAR 
data, and surface resistance was estimated from the LAI. Following 
data reported by Schulze et al. (1994) and Kelliher et al. (1995), we 
fit a polynomial function relating bulk surface conductance to LAI 
assuming a maximum leaf stomatal conductance of 0.008 m s−1. 
This approach does not account for species- and ecosystem-level dif-
ferences in stomatal conductance. The ecosystems included in the 
study area range from desert scrub to mixed conifer forests. Previous 
research has indicated that the maximum stomatal conductance mea-
sured in various conifer species to sclerophyllous shrubs ranges from 
0.0038 to 0.0082 m s−1, comparable to the 0.008 m s−1 value used 
here (Kelliher et al., 1995). Surface resistance was taken as the inverse 
of the bulk surface conductance, with values ranging from 38 to 55 
s m−1. For any months of AETpm > PPT, we assumed that AET was 
equivalent to PPT and Peff was set equal to zero.

Topographic Water Redistribution
The wetting of each pixel is a function of both effective precipita-
tion and surface runoff as noted in the rearrangement of Eq. [7] 
to F = Peff − SR. It is thus necessary to account for topographic 
redistribution and partitioning of precipitation to quick surface 
runoff in addition to local-scale variation in Peff. One standard 
approach to empirically quantifying topographic control on 
water redistribution is the topographic wetness index, calculated 
as (Beven and Kirkby, 1979) l = ln(a/tanb), where a is the unit or 
specific catchment area in meters, calculated here using the D-inf 
multiple-flow-direction algorithm for flow routing (Tarboton et 
al., 1991), and b is the slope in degrees. The wetness index pro-
vides empirical measures of relative landscape wetness but does not 
provide a mass-conservative approach to redistributing effective 
precipitation across a catchment.

We developed a modified topographic wetness index, referred to 
as the mass conservative wetness index (MCWI) and denoted with 
the symbol a , which accounts for topographic redistribution of 
effective precipitation and maintains conservation of mass of 
catchment-scale precipitation inputs. We argue that ai is propor-
tional to the local pixel wetness index (li) normalized to the mean 
catchment wetness index (l ):

i
i

l
a µ

l
 	 [9]

such that ai = li/(1/N)Sli and Sai = N, where N is the number 
of pixels in a catchment. The normalization ensures conservation 
of mass of the effective precipitation term for a given catchment. 
The scalability of ai was tested by comparing estimations of ai using 
l  calculated for both local subcatchments and for the entire study 
area (Supplemental Fig. S2); the 1:1 scaling between the two values 
indicates that there is not a catchment-size effect on ai.

Calculated MCWI values ranged from 0.4 to 3.4, with the lowest 
values on divergent hillslope summits and ridgelines and the 
greatest values in drainageways, particularly the low-elevation 

drainageways that have large catchment areas (Fig. 3c). These 
values indicate that local effective precipitation may be reduced 
by up to 60% due to runoff, whereas drainageways may receive 
water (as soil moisture) in excess of up to 340% over local effective 
precipitation inputs.

The fraction of monthly Peff partitioned to F at each pixel (Fi, m 
s−1) using this modified topographic wetness index was deter-
mined as

effi i iF P=a 	 [10]

Primary Production and Standing Biomass
Net primary production was calculated differently for each 
EEMT modeling approach, reflecting incorporation of increas-
ing levels of topographic and vegetative information. The NPP 
calculation for EEMTTRAD was based on the temperature of the 
months in which precipitation is greater than evapotranspiration. 
For these months, NPP was calculated following Lieth (1975): 
NPP = 3000[1 − exp(1.315 − 0.119T)]−1. Using this equation, 
NPP was calculated on a monthly time step for all months of 
PPT > PET, and NPP was scaled to a monthly time step based 
on each month’s percentage of 1 yr. This method of NPP estima-
tion does not account for primary production that occurs using 
stored soil moisture and thus probably underestimates total NPP. 
However, comparison of NPP calculated using this method relative 
to global NPP data sets indicates reasonable agreement between 
the two (Rasmussen and Gallo, 2013; Rasmussen et al., 2005).

For the EEMTTOPO approach, we incorporated information on 
elevation and aspect using an empirical function fit to NPP data 
presented by Whittaker and Niering (1975) for the SCM. Aspect 
and slope were converted to the unitless parameter “northness,” 
which is the product of the cosine of aspect and the sine of slope 
and ranges from −1 for a south-facing, vertical cliff to 1 for a north-
facing vertical cliff (Fig. 3d). Total annual aboveground NPP (g 
m−2 yr−1) was regressed against elevation and northness with the 
best-fit multiple linear regression model of

NPP 0.39 346 187z n= + -   	 [11]

where z is elevation in meters and n is northness, with r2 = 0.82, 
P < 0.0001, and RMSE = 168 g m−2 yr−1. Any predicted values 
<100 g m−2 yr−1 were adjusted to 100 g m−2 yr−1 to match the 
minimum NPP measurements in the Whittaker and Niering 
(1975) data set.

For the EEMTTOPO-VEG approach, annual NPP (g m−2 yr−1) 
was calculated as a function of canopy height, derived from the 
LiDAR data, using a polynomial function relating canopy height 
and aboveground NPP using data reported by Whittaker and 
Niering (1975):
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( )NPP 196  36 0.61 12.0933h h= + - -   	 [12]

where h is canopy height (m) derived from the LiDAR data, with 
r2 = 0.89, P < 0.0001, and RMSE = 130 g m−2 yr−1.

Standing biomass (Mg ha−1) was calculated from the LiDAR mean 
canopy height (mch) profile (Asner et al., 2011; Lefsky et al., 1999; 
Mascaro et al., 2011). The model parameters were determined from 
a regression of the field-measured biomass from 13 0.1-ha plots in 
the SCM (1.3 ha), 79 0.05-ha plots in the Pinaleño Mountains, 
Arizona (3.65 ha), and 48 0.1-ha plots in the Jemez River Basin, 
New Mexico (4.8 ha) (Swetnam, 2013):

2.151Biomass 1.441 mch=  	  [13]

All three study areas shared the same plant functional type groups 
(Smith et al., 1997), where the presence and frequency of species 
in the stand are all closely related. Average biomass measured in 
the SCM plots was 226.66 ± 125.84 Mg ha−1; the peak quantity 
of biomass measured in any plot in the three study areas was in 
the Pinaleño Mountains, where an equivalent of 1495 Mg ha−1 
was measured in the 0.05-ha plots. Similar stand conditions and 
life histories are shared between the Pinaleño Mountains and the 
SCM (Niering and Lowe, 1984; Whittaker and Niering, 1975). 
In a similar plot in the SCM (white fir [Abies concolor (Gordon & 
Glend.) Lindl. ex Hildebr.] ravine forest), Whittaker and Niering 
reported 790 Mg ha−1 of aboveground biomass.

Effective Energy and Mass Transfer
The individual components of EEMT were calculated as in Eq. 
[4] and [5] and the EEMT term calculated as in Eq. [3] for each 
pixel on a monthly basis. To summarize, the three approaches 
to calculating EEMT varied in the derivation of the F and NPP 
terms and incorporated greater levels of environmental informa-
tion. Specifically: (i) EEMTTRAD was based on F derived from 
the balance of precipitation and PET and NPP derived using the 
Lieth empirical function; (ii) EEMTTOPO was calculated based 
on F derived using the coupled Penman–Budyko approach to cal-
culating AET and the MCWI to account for local variations in 
water redistribution, and NPP was calculated from the empirical 

relationship between NPP, northness, and elevation; and (iii) 
EEMTTOPO-VEG was calculated using F derived from the bal-
ance of precipitation and AET calculated using Penman–Monteith 
that accounted for local surface resistance and canopy-influenced 
aerodynamic resistance, the MCWI to account for local variations 
in water redistribution, and NPP derived from the empirical rela-
tionship between LiDAR-measured canopy height and NPP. The 
correlation among environmental variables and the various EEMT 
values are presented in Supplemental Table S1, with an analysis 
of factor importance to EEMT prediction for each method 
determined using a simple multiple linear regression approach 
(Supplemental Table S2).

66Results and Discussion
Watershed Climate Classification
Climate forcing parameters of temperature and precipitation vary 
consistently and inversely with elevation across the study area, i.e., 
decreasing temperature and increasing precipitation with increas-
ing elevation, as is typical of mountainous ecosystems in the Desert 
Southwest (DeBano et al., 1995) (Fig. 3a and 3b). Climate across 
the watershed was characterized using an aridity index derived from 
modeled climate parameters to account for this covariance and to 
facilitate a simpler discussion of EEMT variation with climate and 
elevation. Values for the aridity index, defined as the ratio between 
PETH and MAP, ranged from a maximum of 2.5 in the low-ele-
vation systems to a minimum of 0.6 in the high-elevation systems. 
The PETH/MAP data were classified into five classes using a hier-
archical classification scheme based on Ward’s minimum variance 
method to define the distance between classes (Milligan, 1979). The 
number of classes was determined by iterating with various num-
bers of classes, ranging from 3 to 10. It was determined that five was 
the fewest number of classes required to best capture the transition 
in climate from water-limited (PETH/MAP > 1) to energy-limited 
(PETH/MAP < 1) systems. The classification scheme was specifi-
cally focused to capture the transition from energy- to water-limited 
systems because this represents a key transition in hydrologic func-
tion and vegetation composition (Brooks et al., 2011). The five 
classes were categorized and named based on PETH/MAP ranges 
into the following (Table 1):

Table 1. Aridity class potential evapotranspiration/mean annual precipitation (PET/MAP) values and associated elevation, vegetation, and effective 
energy and mass transfer using the traditional method (EEMTTRAD), EEMT with topographic controls (EEMTTOPO), and EEMT with both topo-
graphic and vegetation controls (EEMTTOPO-VEG).

Aridity index class PET/MAP Elevation Canopy height Biomass EEMTTRAD EEMTTOPO EEMTTOPO-VEG

m m Mg ha−1 ——————————— MJ m−2 yr−1 ———————————

Humid 0.70 ± 0.05† 2433 ± 113 5.44 ± 4.57 104.9 ± 190.7 33.7 ± 2.9 23.1 ± 3.4 21.2 ± 11

Humid transition 0.89 ± 0.07 2080 ± 115 2.34 ± 2.19 19.4 ± 56.4 24.4 ± 3.2 19.1 ± 3.5 12.1 ± 5.8

Arid transition 1.18 ± 0.09 1683 ± 101 1.19 ± 1.18 4.9 ± 17.3 14.1 ± 2.4 15.0 ± 3.8 9.0 ± 3.1

Semiarid 1.51 ± 0.1 1365 ± 84 0.78 ± 1.03 2.9 ± 20.6 7.6 ± 1.0 11.4 ± 3.4 7.6 ± 2.1

Arid 1.97 ± 0.2 1063 ± 107 0.77 ± 0.76 1.9 ± 9.9 5.5 ± 0.5 8.0 ± 3.1 6.7 ± 1.4

† Mean ± 1s.
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1.	  Humid with a range of 0.6 to 0.8

2.	  Humid transition with a range of 0.8 to 1.0

3.	  Arid transition with a range of 1.0 to 1.3

4.	  Semiarid with a range of 1.3 to 1.7

5.	  Arid with a range of 1.7 to 2.5

The classes correspond with an approximate 300-m 
elevation gain interval and with changes in vegeta-
tion community (Table 1), grading from humid 
classes at high elevation dominated by coniferous 
ecosystems, to transitional classes at mid-eleva-
tion that include the transition from open grass 
oak woodland to mixed oak and pine forest plant 
communities, to arid classes at low elevation occu-
pied by desert scrub. Canopy height and biomass 
increased with elevation and wetness (Table 1). 
Vegetation assemblage and LAI followed the varia-
tion in elevation-controlled climate parameters and 
local topographic controls on MCWI and north-
ness (Fig. 3).

Measures of Effective Energy 
and Mass Transfer
Traditional Effective Energy and 
Mass Transfer
Values for EEMTTRAD ranged from a low near 5 
MJ m−2 yr−1 in low-elevation, very dry desert scrub 
systems to a maximum of just over 42 MJ m−2 yr-1 
in the wet, mixed conifer, high-elevation systems 
(Fig. 4a). The values varied directly with elevation 
following the elevation control on climatological 
parameters. This range of values corresponds well 
with EEMTTRAD ranges calculated previously 
using the 4-km and 800-m pixel resolution PRISM 
climate data set (Rasmussen et al., 2005) that ranged 
from 10 to 35 MJ m−2 yr−1, and with an initial 
attempt to incorporate topography into EEMT esti-
mates at a 10-m pixel resolution using an empirical 
relationship derived among EEMT, temperature, 
precipitation, and vapor pressure deficit (Chorover 
et al., 2011) that ranged from <5 to 37 MJ m−2 yr−1.

Effective Energy and Mass Transfer 
with Topographic Control
Values for EEMTTOPO ranged from a minimum 
of 3.5 MJ m−2 yr−1 at low elevation up to a maxi-
mum of 46.5 MJ m−2 yr−1 at high elevation (Fig. 4b). 
As with EEMTTRAD, the values for EEMTTOPO 
increased with elevation and increasing water avail-
ability but also exhibited distinct variation with 
aspect and local wetness within each aridity index Fi
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class (Table 2). Values for EEMTTOPO were generally on the order 
of 5 MJ m−2 yr−1 greater on north-facing slopes than south-facing 
slopes, with the largest difference of 5.7 MJ m−2 yr−1 noted in the 
arid transition class and the smallest difference of 4.6 MJ m−2 yr−1 
observed in the arid class. Similarly, EEMTTOPO values tended to 
be greater in water-gaining portions of the landscape, with values 
on average 1.4 MJ m−2 yr−1 greater in areas with MCWI values 
>1. The largest EEMTTOPO difference of 1.9 MJ m−2 yr−1 was 
observed in the humid transition class, with the smallest differ-
ence 0.6 MJ m−2 yr−1 observed in the arid class.

Aspect and topographic wetness had varying impacts on 
EEMTTOPO, with some variation among aridity classes (Table 2). 
Generally greater values of EEMTTOPO were predicted on north-
facing slopes, with values averaging 5 MJ m−2 yr−1 greater on slopes 
with northness values >0 (Table 2). The smallest aspect difference 
of 4.6 MJ m−2 yr−1 was observed in the arid class, where differ-
ences were probably minimized due to the overall aridity of this 
portion of the SCM. In comparison, the largest aspect difference 
of 5.7 MJ m−2 yr−1 was observed in the arid transition class on the 
boundary of water and energy limitation, where aspect-controlled 
variation in radiative forcing and temperature produced greater dif-
ferences in water availability and primary production. The values for 
EEMTTOPO for north-facing slopes in a given aridity class generally 
corresponded closely to the mean EEMTTOPO values for south-
facing slopes in the next wetter class, e.g., an average EEMTTOPO 
value of 22.5 MJ m−2 yr−1 on the north-facing slopes in the humid 

transition class relative to an average of 21.2 MJ m−2 yr−1 on the 
south-facing slopes in the humid class. This pattern was consistent 
across all aridity classes, indicating that north-facing slopes in a 
given climate zone function similarly to wetter ecosystems, equiva-
lent to an approximate 300-m elevation gain (Table 1). A similar 
pattern has been observed in vegetation patterning and soil proper-
ties across the SCM (Lybrand and Rasmussen, 2014; Pelletier et al., 
2013; Whittaker et al., 1968) and other elevation gradients in the 
western United States (Poulos et al., 2010).

Variation in EEMTTOPO between water-gaining (MCWI > 1) 
and water-losing (MCWI < 1) landscape positions were less 
pronounced than those associated with aspect, with an average 
increase of 1.4 MJ m−2 yr−1 in water-gaining portions of the 
landscape. The difference between losing and gaining positions 
increased with moisture availability and aridity index class (Table 
2), probably a function of greater water available to redistribute 
to gaining portions of the landscape. The MCWI as applied here 
does not account for runoff response to rainfall characteristics, 
e.g., high-intensity monsoon rainfall that may exceed surface soil 
infiltration rates with the potential for substantial water redistribu-
tion from losing to gaining portions of the landscape even in the 
semiarid and arid systems (Zhang et al., 2011).

Effective Energy and Mass Transfer with 
Topographic and Vegetation Control 
The va lues for EEMT TOPO-V EG ranged from 2 .5 to 

63.4 MJ m−2 yr−1, increasing from 
low to high elevation similar to the 
other values for EEMT (Fig. 4c). 
The highest values of EEMT, 35 
to 63 MJ m−2 yr−1, were spatially 
constrained to those areas with an 
elevation greater than ?2000 m 
asl and PETH/MAP < 1.0, cor-
responding to predominantly 
pine and mixed conifer ecosys-
tems. Differences in EEMT with 
aspect and topographic wetness 
averaged 3.9 and 0.9 MJ m−2 
yr−1, respectively, but exhibited 
substantial variation with aridity 
index class (Table 3). The EEMT 
differences by aspect increased 
with increasing water availability, 
with a large increase in the relative 
differences observed in the humid 
class. Similar to values predicted 
for EEMTTOPO, average north-
aspect EEMTTOPO-VEG values for 
a given aridity class were compa-
rable to average EEMTTOPO-VEG 
values for south-facing slopes in 

Table 2. Mean effective energy and mass transfer with topographic controls (EEMTTOPO) by aspect and wet-
ness index grouped by aridity index class.

Aridity index class

Aspect Wetness index

North South Difference Gaining Losing Difference

Humid 26.2 ± 2.71† 21.16 ± 2.19 5.04 ± 0.01 24.03 ± 3.35 22.49 ± 3.34 1.54 ± 0.014

Humid transition 22.45 ± 2.57 17.43 ± 2.56 5.02 ± 0.01 22.45 ± 2.57 17.43 ± 2.56 1.91 ± 0.013

Arid transition 18.65 ± 2.87 12.98 ± 2.45 5.67 ± 0.013 20.39 ± 3.5 18.48 ± 3.29 1.55 ± 0.019

Semiarid 14.37 ± 2.25 9.24 ± 2.3 5.13 ± 0.011 18.65 ± 2.87 12.98 ± 2.45 1.3 ± 0.017

Arid 10.72 ± 2.35 6.11 ± 1.81 4.61 ± 0.012 16.04 ± 3.67 14.49 ± 3.71 0.64 ± 0.018

Mean 5.08 ± 0.34 1.39 ± 0.42

† Mean ± 1s.

Table 3. Mean effective energy and mass transfer with topographic and vegetation controls (EEMTTOPO-
VEG) by aspect and wetness index grouped by aridity index class.

Aridity index class

Aspect Wetness index

North South Difference Gaining Losing Difference

Humid 26.69 ± 11.11† 18.07 ± 9.14 8.62 ± 0.04 22.89 ± 11.55 20.39 ± 10.13 2.49 ± 0.043

Humid transition 15.01 ± 6.41 10.78 ± 4.84 4.22 ± 0.021 12.99 ± 6.47 11.78 ± 5.34 1.22 ± 0.022

Arid transition 10.94 ± 2.19 7.92 ± 2.48 3.02 ± 0.014 9.11 ± 2.98 8.96 ± 3.19 0.15 ± 0.016

Semiarid 8.81 ± 1.56 6.67 ± 1.92 2.13 ± 0.009 7.78 ± 1.92 7.49 ± 2.13 0.28 ± 0.01

Arid 7.43 ± 1.05 6.09 ± 1.34 1.34 ± 0.007 6.89 ± 1.36 6.51 ± 1.39 0.38 ± 0.008

Mean 3.87 ± 2.56 0.90 ± 0.88

† Mean ± 1s.
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the next wetter humidity class. Differences in EEMTTOPO-VEG 
between water-gaining and water-losing landscapes increased with 
increasing water availability, but overall exhibited minimal varia-
tion. In general, the largest impacts of topography and vegetation 
on EEMTTOPO-VEG values were observed in the energy-limited 
humid ecosystems that are dominated by mixed conifer vegetation 
assemblages and are the most biologically productive (Whittaker 
and Niering, 1975). These systems also exhibit the greatest soil 
C stocks, degree of chemical weathering, and soil development 
(Lybrand and Rasmussen, 2014).

Vegetation Effects on Effective Energy 
and Mass Transfer
The effects of vegetation on the calculated EEMT was evident 
in the spatial patterning exhibited in EEMTTOPO-VEG (Fig. 
4c). This result was expected because vegetation is incorporated 
into energy, water, and C balances through the LAI constraint 
on surface temperature estimates (Eq. [6]), the surface resistance 
term in AET estimates (Eq. [12]), and the modeled relation of 
canopy height to NPP (Eq. [16]). Multiple linear regression analy-
sis of EEMTTOPO-VEG relative to elevation, northness, MWCI, 
and canopy height indicated that canopy height was the most 
important factor accounting for variations in EEMTTOPO-VEG 
(Supplemental Table S2). In particular, predictions of AET using 
Penman–Monteith are highly sensitive to surface resistance 
(Shuttleworth, 1993). The predicted surface resistance estimates 
were reasonable and in the range of 38 to 55 s m−1 but probably 
introduce the largest source of error and spatial variation into the 
water balance used to calculate EEMTTOPO-VEG.

We further examined the relative impact of vegetation incorpo-
ration into EEMT estimates through comparison of the ratio 
between EEMTTOPO-VEG and EEMTTOPO by aridity class (Fig. 
5a). The data were a subset of data for those locations with no or low 
burn severity to avoid any confounding effects of fire. Values for 
EEMTTOPO-VEG/EEMTTOPO indicated minimal differences in 
EEMT estimates for the arid and humid classes, with mean ratios 
of 1.08 and 0.91, respectively. The largest differences between the 
two methods for calculating EEMT were observed for the humid 
transition and arid transition classes, with average ratio values 
of 0.62, indicating that EEMTTOPO values were greater than 
EEMTTOPO-VEG values. The differences between the two EEMT 
values are a direct function of vegetation in that EEMTTOPO-VEG 
incorporates the current vegetation structure into its estimates of 
water and C fluxes. We suggest that EEMTTOPO provides a maxi-
mum “potential” estimate of EEMT, whereas EEMTTOPO-VEG 
reflects current or “actual” energy and mass transfers based on the 
current vegetation structure.

The greatest difference between the two estimates was observed at 
the water- to energy-limited transition zone. This zone probably 
represents the zone of greatest dynamism in vegetation structure 
and composition because it bounds the transition zone in the water 

balance and is associated with the transition from mainly grass, 
shrub, and open woodland plant communities to more mixed pine 
and oak forest (Whittaker and Niering, 1975). The current vegeta-
tion structure in this zone is probably a function of both longer 
term, e.g., centennial time scales, and shorter term, e.g., annual to 
decadal, fluctuations in climate-controlled water availability and 
drought. Climate fluctuation is also coupled with the time scales 
of the vegetation response to changes in climate that vary with 
vegetation type, e.g., long-lived trees may not reflect recent changes 
in water availability that would favor more temporally dynamic 
grasses and shrubs (Walther et al., 2002).

The spatial patterns of EEMTTOPO-VEG, particularly at high 
elevations (Fig. 4c), indicated a negative trend to increasing burn 
severity class from the 2003 Aspen fire that occurred approxi-
mately 7 yr before acquisition of the NAIP image and LiDAR 
collection. The differences in EEMTTOPO-VEG and EEMTTOPO 

Fig. 5. Comparison of the natural logarithm of the ratio between 
effective energy and mass transfer with topographic controls (EEMT-
TOPO) and effective energy and mass transfer with topographic and 
vegetation controls (EEMTTOPO-VEG) by (a) aridity/humidity class 
and (b) burn severity. Ratio values of 1 indicate identical values for 
the two measures of EEMT, denoted by a dashed line in both figures. 
Deviation from the 1 line indicates divergence between the two mea-
sures of EEMT.
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increased significantly with increasing burn sever-
ity, with ratio values decreasing from a mean of 
0.95 for areas that did not burn, to a mean of 0.64 
for the high-severity burn areas (Fig. 5b). Lower 
ratios suggest a greater differential between maxi-
mum potential EEMT and actual EEMT recorded 
in the current vegetation structure. Disturbance 
events, such as wildfire, that remove vegetation 
and alter local patterns of evaporation and primary 
production thus serve to reduce the modeled values 
of EEMTTOPO-VEG relative to the idealized condi-
tions modeled with EEMTTOPO.

Biomass Relationship to Effective 
Energy and Mass Transfer
The average 10-m pixel mean canopy height across 
the Sabino Creek watershed ranged from 0 to 26 
m, with the biomass estimated to range from 19 
to 1600 Mg ha−1 based on the 99.5% quantile 
of canopy height and biomass values. The 99.5% 
quantiles were used to exclude very high values of 
canopy height that yield unreasonably high biomass 
values. The 99.5% quantile values were similar to 
independent measures of aboveground biomass 
in the SCM (Whittaker and Niering, 1975) and 
Pinaleño Mountains nearby in southeastern 
Arizona (Pelletier et al., 2013; Swetnam, 2013) that 
reported maximum measurements on the order of 
790 to 1500 Mg ha−1, respectively.

Both EEMTTOPO and biomass exhibited simi-
lar patterns of increase with both elevation and 
northness (Fig. 6), suggesting that EEMTTOPO 
may be used to predict the maximum biomass for a given area. 
Direct comparison of biomass to EEMTTOPO indicated a power 
law relationship in the form of Biomass = mEEMTTOPO

b. The 
power function was fit to the 99.5% quantile of biomass and 
EEMTTOPO, yielding parameters of m = 0.032 ± 0.0075 kg m2 
yr ha−1 MJ−1 and b = 3.22 ± 0.071, with an equation fit of r2 = 
0.98, P < 0.0001, and RMSE of 69.7 Mg ha−1 (Fig. 7). The model 
fit well the overall trend in the data, with the largest discrepancy 
between actual and predicted values noted near the inflection 
point of the function at EEMTTOPO values of ?12 to 18 MJ 
m−2 yr−1. This zone corresponds with the dry and wet transition 
humidity classes and suggests a possible break in scaling between 
biomass and EEMTTOPO. At high values of EEMTTOPO, biomass 
tended to decrease. These areas correspond to those impacted by 
moderate and severe burns and a loss of standing biomass. The 
power law relationship suggests that EEMTTOPO may provide an 
upper bound estimate for standing biomass for what the potential 
for aboveground biomass could attain in these areas. The relation-
ship of biomass to EEMTTOPO probably reaches a plateau beyond 
EEMTTOPO values of 35 to 40 MJ m−2 yr−1, as suggested by global 

upper limits on aboveground biomass in temperate conifer forests 
on the order of 1600 to 1800 Mg ha−1 (Keith et al., 2009).

Comparison of Effective Energy and Mass 
Transfer Values to Soil Depth
The separate sets of EEMT values were directly compared with 
measured and modeled values of soil depth for a small ?5-ha for-
ested catchment in the headwaters of Sabino Creek as a means to 
document the relative improvement that incorporation of topog-
raphy and vegetation into EEMT imparts on predicting pedon- to 
hillslope-scale CZ structural variation. The soil depth data derive 
from previous work in the SCM and represent the most robust set 
of soil depth data we have collected to date (Holleran et al., 2014; 
Pelletier and Rasmussen, 2009). The catchment is at a mean eleva-
tion of 2400 m asl, with mixed conifer vegetation, granitic parent 
material, and soils that include a combination of Entisols on ridges 
and slopes and Mollisols in convergent water-gathering portions 
of the landscape (Holleran, 2013; Lybrand and Rasmussen, 2014). 
The soil depth data included 24 pedons and soil depth derived from 
a numerical model describing soil production and mass transport. 

Fig. 6. Variation in (a) effective energy and mass transfer with topographic controls 
(EEMTTOPO) and (b) the upper 99.5% quantile of biomass by topographic northness 
(a combination of aspect and slope) and elevation. The data indicate that both values 
increase with elevation and northness in a similar pattern.
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Measured and modeled soil depths range from ?0.15 m on 
ridgetops to >2 m in convergent areas of the landscape. Values for 
EEMTTRAD, EEMTTOPO, and EEMTTOPO-VEG were extracted 
for each pedon location and modeled soil depth pixel. Simple cor-
relation analyses revealed significant variation in the relationships 
among the sets of EEMT values and the soil depth data (Table 
4). The vales for EEMTTOPO exhibited the strongest and most 
significant positive correlations to both measured and modeled 
soil depth data, indicating that incorporation of topographic con-
trols on local energy and water balance and primary productivity 
significantly increased the positive relationship between EEMT 
and pedon- to hillslope-scale measures of CZ structural variability.

The relative lack of correlation between soil depth and EEMTTOPO-

VEG suggests that, for this location, the current vegetation stand 
has minimal influence on soil depth. The variance in EEMTTOPO-

VEG is largely attributed to canopy height data (Supplemental Table 
S2) that represent only one snapshot in time. We suggest that 
EEMTTOPO presents a stronger relationship than EEMTTOPO-

VEG because it better captures spatial patterns in the long-term 
average, i.e., >103 yr, fluxes of water and C into the subsurface, 

whereas EEMTTOPO-VEG captures only the modern signature 
that may not reflect longer time scale patterns. This was clearly 
demonstrated in the large discrepancy between EEMTTOPO and 
EEMTTOPO-VEG for areas that recently experienced severe wildfire. 
Estimations of EEMTTOPO-VEG may be improved by incorporat-
ing decadal scale time series of canopy height and LAI that better 
describe longer term patterns of vegetation structure and localized 
primary production. The data suggest that EEMTTOPO presents 
the more robust predictor of CZ structure, function, and evolu-
tion over the long term and represents a measure of the potential 
or optimum influx of energy and mass to the CZ.

66Summary
The analyses in this study indicated clear patterns in the EEMT to 
the subsurface CZ with topography and vegetation. Incorporating 
greater levels of environmental information introduced greater 
local complexity in EEMT, with clear variation in EEMT by aspect 
and with current vegetative cover. Key findings include:

• Greater values of EEMT were observed on north-facing 
slopes within a given aridity class and elevation zone, equiva-
lent to a 300-m elevation gain. This pattern corresponds 
with observed aspect variation in modern canopy height and 
indicates clear aspect control on energy and mass influxes to 
the CZ that are probably important to understanding aspect-
controlled variation in CZ evolution, structure, and function.

• The largest discrepancies in EEMTTOPO and EEMTTOPO-
VEG were observed at the water- to energy-limited system 
transition where current vegetation structure is highly 
sensitive to local variations in the water and energy balances. 
Disturbance in the form of stand-replacing wildfire also 
substantially reduced estimates of EEMTTOPO-VEG relative 
to EEMTTOPO as a result of a reduction in biomass, primary 
productivity, and variations in surface and aerodynamic 
resistance. The discrepancy between the two EEMT values 
indicates deviation between what could be considered the 
long-term average energy and mass influx, or EEMTTOPO, 
and the current vegetation stand controlled energy and mass 
influx, or EEMTTOPO-VEG.

• A power law relationship was observed between aboveg-
round biomass and EEMTTOPO, indicating the potential for 
using EEMTTOPO to predict an upper bound for biomass in 
a given area.

• The incorporation of topography and vegetation signifi-
cantly increased the correlative relationship between EEMT 
and subsurface CZ structure as quantified here as soil depth. 
In particular, EEMTTOPO exhibited the strongest positive 
correlation to measured and modeled values of soil depth, in-
dicating that this version of EEMT may serve as an effective 
predictor of CZ properties that captures pedon- to hillslope-
scale variation in water and C influxes.

Fig. 7. Relationship between effective energy and mass transfer with 
topographic controls (EEMTTOPO) and biomass. Dark gray sym-
bols are those points within the 99.5% quantile; light gray points are 
greater than the 99.5% quantile. The black line is the best-fit power 
law function in the form of: Biomass = mEEMTTOPO

b, where m is 
0.032 and b is 3.22 with an RMSE of 69.7 Mg ha−1.

Table 4. Pairwise correlation of soil depth data and effective energy 
and mass transfer using the traditional method (EEMTTRAD), EEMT 
with topographic controls (EEMTTOPO), and EEMT with both 
topographic and vegetation controls (EEMTTOPO-VEG) for a small 
catchment in the headwaters of Sabino Creek. The data include point-
measured (pit) soil depth data and numerically modeled soil depth data 
for the selected catchment.

EEMT method

Pit data (n = 24) Model data (n = 319)

r P value r P value

EEMTTRAD −0.038 0.861 −0.058 0.298

EEMTTOPO 0.385 0.063 0.569 <0.0001

EEMTTOPO-VEG −0.019 0.929 0.131 0.019
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