Rates of erosion and topographic evolution of the Sierra Nevada, California, inferred from cosmogenic \(^{26}\)Al and \(^{10}\)Be concentrations

Greg M. Stock,1* Robert S. Anderson1,2 and Robert C. Finkel3

1 Department of Earth Sciences, University of California, Santa Cruz, CA 95064, USA
2 Department of Geological Sciences and Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO 80309, USA
3 Center for Accelerator Mass Spectrometry and Geosciences and Environmental Technology, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

Abstract

Concentrations of cosmogenic \(^{26}\)Al and \(^{10}\)Be in cave sediments and bedrock surfaces, combined with studies of landscape morphology, elucidate the topographic history of the southern Sierra Nevada over the past 5 Ma. Caves dated by \(^{26}\)Al/\(^{10}\)Be in buried sediments reveal that river incision rates were moderate to slow between \(\sim 5\) and \(3\) Ma (\(\leq 0.07\) mm a\(^{-1}\)), accelerated between \(3\) and \(1.5\) Ma (\(\sim 0.3\) mm a\(^{-1}\)), and then have subsequently become much slower (\(\sim 0.02\) mm a\(^{-1}\)). Although the onset of accelerated incision coincides in time with both postulated Pliocene tectonism and pronounced global climate change, we argue that it primarily represents the response to a discrete tectonic event between \(3\) and \(5\) Ma. Dated cave positions reveal that, prior to \(3\) Ma, river canyons displayed up to \(1.6\) km of local relief, suggesting that Pliocene rock uplift elevated pre-existing topography. Renewed incision beginning \(\sim 3\) Ma deepened canyons by up to \(400\) m, creating narrow inner gorges. Tributary streams exhibit strong convexities, indicating that the transient erosional response to Pliocene uplift has not yet propagated into upland surfaces. Concentrations of \(^{26}\)Al and \(^{10}\)Be in bare bedrock show that upland surfaces are eroding at slow rates of \(\sim 0.01\) mm a\(^{-1}\). Over the past \(\sim 3\) Ma, upland surfaces eroded slowly while adjacent rivers incised rapidly, increasing local relief. Although relief production probably drove at least modest crestal uplift, considerable pre-Pliocene relief and low spatially averaged erosion rates suggest that climatically driven rock uplift is not sufficient to explain all uplift implied by tilted markers at the western edge of the range. Despite the recent pulse of erosion, spatially averaged erosion rates are low, and have probably acted to preserve the broad topographic form of the Sierra Nevada throughout much of the late Cenozoic. Copyright © 2005 John Wiley & Sons, Ltd.

Keywords: cosmogenic nuclides; burial ages; bedrock incision; relief; landscape evolution; Sierra Nevada

Introduction

The evolution of mountainous topography results from complex interactions between tectonic forces and climatically driven erosion. The relative roles these factors have played in the apparent uplift and erosion of mountain belts in the late Cenozoic remains a topic of debate (e.g. Molnar and England, 1990; Raymo and Ruddiman, 1992; Zhang et al., 2001). Many studies have focused on the Sierra Nevada range of California, where postulated tectonic uplift in the past 3 to 5 million years (Ma) coincided with pronounced global climate change. These studies have suggested either fundamentally tectonic (e.g. Unruh, 1991; Wakabayashi and Sawyer, 2001; Jones et al., 2004) or climatic (Small and Anderson, 1995) mechanisms for uplift, while others call for no late Cenozoic uplift at all and a reduction of altitude (Wernicke et al., 1996; House et al., 1998; Poage and Chamberlain, 2002). Spatially and temporally distributed erosion rates, particularly from the rugged southern Sierra, can help to test the postulated uplift hypotheses and clarify the roles tectonics and climate play in the evolution of mountainous topography.

Copyright © 2005 John Wiley & Sons, Ltd.
Cosmogenic nuclides offer unprecedented insights into rates of mountain erosion. For example, nuclide concentrations record long-term erosion rates of bare bedrock surfaces (e.g. Lal, 1991; Small et al., 1997; Bierman and Caffee, 2002), and can be used to date strath terraces (Burbank et al., 1996; Reusser et al., 2004). Nuclide concentrations in alluvial sediment can date depositional terraces (Hancock et al., 1999; Hanks et al., 2004; Wolkowinsky and Granger, 2004), and yield catchment-averaged erosion rates (e.g. Granger et al., 1996; Bierman and Steig, 1996; Schaller et al., 2001, 2002; Vance et al., 2003). If previously exposed sediment is deeply buried, differential decay between two nuclides can date the time of burial (e.g. Granger and Muzikar, 2001; Granger et al., 1997, 2001b). Together these applications can reveal much about the timing and magnitude of topographic evolution in mountainous regions.

In the Sierra Nevada, a unique juxtaposition of riverside marble caves inset below granitic upland surfaces provides an opportunity to integrate multiple cosmogenic nuclide techniques to determine erosion rates across diverse landforms. We dated caves in canyon walls using 26Al/10Be burial dating to document rates of river incision into bedrock, a primary means by which landscapes respond to tectonic forcing. We also measured nuclide concentrations in bare bedrock surfaces to constrain erosion rates of adjacent granitic uplands. By combining these techniques, we derive high-resolution records of erosion, relief production, and palaeotopography in the Sierra Nevada over the past 5 Ma. These new records help to link many of the conceptual models put forth to explain the modern topography.

The Sierra Nevada

The Sierra Nevada is an asymmetric, west-tilted fault block with a mean altitude of c. 2800 m and crestal altitudes up to 4419 m. It is flanked on the west by the Great Valley, a deep structural basin, and on the east by the extensional Basin and Range Province (Figure 1A). Due to the tilt-block geometry, the range crest is skewed to the east, and the eastern slope is a steep normal-faulted escarpment. Below the glacially sculpted cirques and arêtes of the range crest, the broad western slope of the range descends in a series of undulating low-relief upland surfaces punctuated by deeply incised river canyons (Figures 1A and 2). As the Great Valley is thought to have remained at sea level throughout the Cenozoic (Huber, 1981), differential rock uplift between the Great Valley and the range crest (i.e. westward tilting) has been accomplished about a hinge line in the eastern Great Valley (Figure 1A). Differential rock uplift and surface uplift are greatest at the range crest; in this paper, crestal uplift is synonymous with maximum uplift. While the northern Sierra represents a simple westward-tilted block, the southern Sierra displays a more complex westward-stepping pattern that also dips to the south (Bateman and Wahrhaftig, 1966; Wakabayashi and Sawyer, 2001).

Cretaceous arc volcanism apparently built high-standing topography that was deeply eroded in the early Cenozoic. Presently exposed rocks in the range are predominantly late Cretaceous (c. 80–120 Ma) granitic rocks of the Sierra Nevada batholith (e.g. Chen and Moore, 1982) that intruded Jurassic to Triassic country rocks that now fringe the batholith as fragmented metamorphic pendants (Figure 1A). Eocene sediments locally cover plutons aged c. 100 Ma emplaced at depths of 11 to 15 km (Ague and Brimhall, 1988), requiring erosion rates averaging 0.26–0.35 mm a$^{-1}$ between roughly 100 and 40 Ma. Correspondingly, sedimentation rates in the Great Valley between 100 and 40 Ma are as high as 0.52 mm a$^{-1}$. However, Oligocene and Miocene–Pliocene deposits set into Eocene sediments suggest minimal river incision at exceptionally low rates (<0.003 mm a$^{-1}$) after c. 40 Ma, corresponding to sustained low sedimentation rates of 0.02 mm a$^{-1}$ (Wakabayashi and Sawyer, 2001). Renewed volcanism beginning c. 15 Ma resulted in nearly continuous cover of the northern Sierra by about 5 Ma (Figure 1; Bateman and Wahrhaftig, 1966). Incision through these deposits yields time-averaged rates of 0.15 mm a$^{-1}$ over the past 5 Ma, corresponding to Great Valley sedimentation rates of 0.16 mm a$^{-1}$ (Wakabayashi and Sawyer, 2001).

Much of the debate presently surrounding the Sierra Nevada relates to whether the range experienced renewed tectonism in the late Cenozoic. A Miocene to early Pleistocene age for creation of modern topography has long been advocated based on apparently tilted river channels (e.g. Lindgren, 1911). Subsequent detailed analyses of tilted channels, volcanic flows, and Great Valley strata along the western slope refined estimates of the timing and magnitude of rock uplift at the crest; projection of tilted markers along a rigid block suggests c. 1.5 to 2.5 km of crestal rock uplift over the last 10 Ma, with most uplift occurring in the past 3 to 5 Ma (Huber, 1981; Unruh, 1991; Wakabayashi and Sawyer, 2001; Jones et al., 2004). Renewed tectonism from 3 to 5 Ma is supported by incision through volcanic deposits and accelerated Great Valley sedimentation at this time (Wakabayashi and Sawyer, 2001).

Considering that a deep crustal root was developed underneath the Sierra Nevada by 80 to 120 Ma, researchers have struggled to explain postulated Late Cenozoic uplift. Recent seismic studies clearly demonstrate that the southern Sierra Nevada presently lacks such a root and that the underlying mantle exhibits significant density contrasts (e.g. Wernicke et al., 1996; Ruppert et al., 1998). Xenoliths document the presence of a dense eclogite root underneath the crest of the Sierra Nevada in the Miocene (8–10 Ma), and its absence in the Pliocene (3.5 Ma), suggesting delamination...
Figure 1. (A) Geologic and topographic setting of Sierra Nevada, showing locations of caves and interfluve surfaces sampled for cosmogenic nuclides. Highly fragmented Palaeozoic and Mesozoic metamorphic belt (dark grey; green in colour version online) containing cave-bearing marble bounds predominantly Cretaceous granitic rocks. Late Cenozoic volcanic deposits (white; orange in colour version online) blanket the northern Sierra, but are generally not present in southern Sierra. (B) Topographic profile along X–X′, showing systematic increase in mean altitude and local relief south of Stanislaus River, reaching maximum in vicinity of Kings River. See Figure 5 for symbol descriptions. This figure is available in colour online at www.interscience.wiley.com/journal/esp

eclogite root delamination could drive ≥1 km of crestal uplift (Ducea and Saleeby, 1996; Jones et al., 2004), consistent with estimates based on tilted markers at the western edge of the range. An alternative uplift mechanism invokes late Cenozoic climate change. Small and Anderson (1995) called upon the flexural–isostatic response to accelerated erosion of the range in the late Cenozoic, suggesting that erosional unloading of the Sierra Nevada and simultaneous deposition of sediment in the adjacent Great Valley could explain roughly half to all of the observed tilt. In this scenario, relief production lowered the mean elevation of the range while summit elevations increased.

While the mechanism for late Cenozoic rock uplift is debated, the uplift itself is also questioned; (U-Th)/He apatite cooling ages apparently record considerable relief in the Sierra as early as the late Cretaceous (House et al., 1998, 2001). The observation that local relief (defined here as the vertical distance between canyon bottoms and adjacent canyon rims) was greater from c. 60 to 80 Ma than at present has been used to argue for a monotonic decline in mean
altitude and local relief during the Cenozoic. In this view, the range attained its maximum altitude and topographic relief in the late Mesozoic, and has been steadily decaying since, with no Cenozoic uplift (Wernicke et al., 1996; House et al., 1998). Oxygen isotopes in authigenic minerals east of the Sierra Nevada crest suggest a persistent rain shadow throughout the Miocene (Poage and Chamberlain, 2002), implying crestal altitudes were also high at that time. These isotopic data have been interpreted as indicating an apparently decreasing rain shadow since the Middle Miocene, which in turn has been interpreted as a loss of as much as 2 km of crestal altitude (Poage and Chamberlain, 2002).

One avenue for investigating rock uplift is by examining rates of river incision into bedrock, the principal erosional mechanism by which landscapes respond to regional tectonic forcing. Rock uplift steepens river gradients, and also increases river discharge by enhancing orographic precipitation; both serve to accelerate vertical bedrock incision relative to adjacent upland surfaces (Whipple and Tucker, 1999). In turn, river incision drives the evolution of mountainous topography by controlling the base level of erosion to which hillslopes respond (e.g. Burbank et al., 1996; Whipple et al., 1999). If the Sierra Nevada did in fact experience rock uplift in the past 5 Ma, then rivers draining the western slope ought to have accelerated their rate of incision in response, increasing topographic relief.

Rates of River Incision

Long-term river incision rates are typically measured by dating fluvial terraces (e.g. Burbank et al., 1996; Lave and Avouac, 2000; Reusser et al., 2004; Wolowinsky and Granger, 2004), but can be difficult to constrain in mountain environments because rapidly incising rivers and frequent hillslope failure preclude formation of, or destroy, terraces. In the Sierra Nevada, previous estimates of river incision have been deduced from incision through dated volcanic remnants (Huber, 1981; Wakabayashi and Sawyer, 2001). However, these estimates suffer from five limitations: (1) widespread late Cenozoic volcanic deposits are not present in the southern half of the range (Figure 1A); (2) incision rates are mostly derived from a single dated surface, yielding time-averaged rates; (3) there is an indeterminate amount of time needed for rivers to incise through volcanic rocks before resuming basement bedrock incision (Wakabayashi and Sawyer, 2001); (4) remnant volcanic outcrops within canyons may not accurately depict the true canyon depth at the time of deposition; and (5) the ages of many volcanic units are not well constrained (e.g. the 5 to 33 Ma Mehrten Formation). Furthermore, volcanic deposits generally predate proposed uplift, so resulting time-averaged incision rates cannot capture the detailed erosional response to this event.

In their middle and lower reaches, many Sierra rivers flow through narrow marble gorges containing caves (Figure 3). These caves record river incision because they represent former river levels etched into bedrock. This is most clearly the case when rivers are briefly diverted into canyon walls, dissolving cave passages parallel to the river. Alternatively, tributary streams sink into fractured rock and dissolve caves along water table surfaces graded to river levels; changes in cave passage slope and morphology can be used to deduce palaeowater table gradients that precisely mark former river positions (Palmer, 1987, 1991). Subsequent bedrock incision lowers rivers relative to caves, leaving sediment-laden passages perched high in canyon walls. A vertical sequence of cave passages is therefore analogous to a flight of strath terraces, increasing with height above modern rivers and marking former river positions. In the Sierra, near-horizontal cave passages, originally formed at the water table, now occupy steep pinnacles and
ridges far above present river levels (Figure 3). These passages are often cut across complex geologic structures, strengthening the argument that their development was fundamentally controlled by river position (Palmer, 1987). Presently active cave streams are graded to local base level, representing sound modern analogies for older caves in canyon walls.

Bedload sediment derived from granitic rocks upstream of caves is often transported through fluvially active cave passages. When incision lowers local base level, cave passages are abandoned by groundwater, sequestering sediment within. Shielded by bedrock, cave sediments can be preserved much longer than strath terraces, and in the Sierra are present where fluvial terraces are not. Most southern Sierra caves are preserved within the very steep walls of inner gorges; with few exceptions, higher (and therefore older) caves above inner gorges have been destroyed by hillslope retreat.

One of us (Stock) visited approximately 300 caves in the Sierra Nevada, and from these identified 18 caves with the following characteristics: (1) morphologies clearly linking them to former river positions; (2) they contained datable quartz-rich sediment of fluvial origin; and (3) they were positioned well downstream of glacial limits, where canyon cutting has been accomplished solely by river incision processes. These caves delineate a northwest-trending study transect across the central and southern Sierra, through the middle reaches of the major river canyons (Figure 1). Thus, the erosion rate and relief production arguments that follow apply strictly to the non-glaciated western slope of the range. Although Pleistocene glaciers significantly modified the topography of the High Sierra (>3500 m elevation), we argue that the topographic signature of late Cenozoic rock uplift, if present, lies in the river canyons.

Cosmogenic 26Al/10Be burial dating

We dated caves using cosmogenic 26Al/10Be burial dating of cave sediment (Granger et al., 1997, 2001b; Granger and Muzikar, 2001; Partridge et al., 2003). Aluminium-26 and 10Be form in quartz-rich rocks near the Earth’s surface, mostly by spallation reactions on O and Si, and to a much lesser extent by negative muon capture and fast muon interactions (Lal, 1991). In situ production of these nuclides decreases with depth below the surface. Production by nucleon spallation decreases roughly exponentially with a penetration length of 160 ± 10 g cm$^{-2}$, or roughly 60 cm in rock of density 2·6 g cm$^{-3}$ (Masarik and Reedy, 1995). Production due to muon reactions is attenuated much less rapidly than spallogenic production, and therefore predominates at greater depth. Sediment accumulates 26Al and 10Be as it is eroded from hillslopes and transported down river networks (e.g. Brown et al., 1995; Anderson et al., 1996; Granger et al., 1996). In a steadily eroding outcrop, the long-term concentration (N_i) of either 26Al or 10Be in quartz at the surface is determined by Equation 1 (Granger et al., 2001a):

$$N_i = \frac{P_n}{(1/\tau_n + \rho e/\Lambda_n)} + \frac{P_\mu}{(1/\tau_\mu + \rho e/\Lambda_\mu)}$$

(1)
where P_i is the production rate by nucleon spallation, P_m is the production rate by muons, τ_i is the radioactive mean life ($\tau_{26} = 1.02 \pm 0.04$ My (Norris et al., 1983); $\tau_{10} = 2.18 \pm 0.09$ Ma (Middleton et al., 1993)), ρ is rock density (assumed 2.7 g cm$^{-3}$), ε is the rock erosion rate, Λ_p is the exponential penetration length for nucleons, and Λ_{μ} is the exponential penetration length for muons. The second term of Equation 1 may be separated into several terms of similar form to account for production at depth by stopped and fast muons (e.g. Granger et al., 2001a; Schaller et al., 2002; Heisinger et al., 2002a,b). The production rates of 26Al and 10Be vary with latitude, altitude and magnetic field variation (Lal, 1991; Stone, 2000) but the ratio of 26Al and 10Be production is fixed at 6-1 (Nishiizumi et al., 1989). If sediment is then washed deeply into a cave where it is shielded from subsequent cosmogenic ray exposure, nuclide production ceases and the concentrations of 26Al and 10Be decay according to:

$$N_i = (N_{i0}) e^{-\tau_i t};$$ \hspace{1cm} (2)

where t is the time since burial. Because 26Al decays roughly twice as fast as 10Be, the pre-burial ratio of these nuclides $(N_{26}/N_{10})_0$ decreases exponentially over time according to:

$$\frac{N_{26}}{N_{10}} = \left(\frac{N_{26}}{N_{10}}\right)_0 e^{-\varepsilon(\tau_p-\tau_{\mu})}$$ \hspace{1cm} (3)

where N_{26} and N_{10} are the concentrations of 26Al and 10Be and $(N_{26}/N_{10})_0$ represents the pre-burial 26Al/10Be ratio as determined from Equation 1. Equations 1 to 3 can be solved iteratively for converging solution of ε (N_{26}/N_{10}) and t (Granger et al., 1997). The 26Al/10Be ratio can be used to date buried sediment from 0.3 to 5 Ma (Granger and Muzikar, 2001).

Sierra Nevada caves present a nearly ideal setting for 26Al/10Be burial dating. Quartz-rich sediment slowly eroded from granitic basins is carried rapidly into caves. A lack of caves, alluvial terraces, and long-lived (≥ 100 ka) glacial moraines upstream of the sampled caves suggest that river sediment has not been shielded for long periods (> 300 ka) prior to burial in the caves. Once inside, tens to hundreds of metres of rock shield sediments such that post-burial nuclide production is negligible (Granger and Muzikar, 2001). The juxtaposition of marble caves downstream of granitic headwaters ensures that sampled sediment clearly originated from the surface.

We collected $0.30–500$ g of granitic sediment from 18 cave sites, isolated 26Al and 10Be using standard techniques (Kohl and Nishiizumi, 1992; Granger et al., 2001b), and measured 26Al/10Be ratios by accelerator mass spectrometry at Lawrence Livermore National Laboratories. We solved for sediment burial ages and pre-burial erosion rates using Equations 1–3, and accounted for post-burial muogenic production following Partridge et al. (2003). As most samples are deeply buried (>30 m) in caves, the correction for post-burial production is negligible.

Cosmogenic burial ages and river incision rates

Cave sediment burial ages range from 0.32 ± 0.10 to 24.72 Ma (Table I, Figure 4), spanning the approximate age limits of the technique (Granger and Muzikar, 2001). Importantly, these ages also span the proposed rejuvenation of Sierra Nevada tectonism. Unburied sediments from modern rivers have 26Al/10Be ratios within error of the expected production ratio of 6-1 (Nishiizumi et al., 1989; Stone, 2000), suggesting that sediment does not enter caves with an inherited burial signal (Table I, Figure 4). Burial ages increase with height above modern river levels (Figure 5), as expected for the conceptual model of cave development outlined above. Replicate analyses indicate that cosmogenic burial ages reproduce within uncertainty, typically $0.08–0.2$ Ma (see below). Due to a measured 26Al/Al ratio at the limit of detection, buried sediment in Palmer Cave, the highest dated cave, provides only a minimum age of 4.72 Ma (Figures 3, 5); Palmer Cave may well be much older than this date implies.

Long-term river incision rates determined from dated caves (Table II) closely match previous estimates from volcanic deposits. Mean incision rates of c. 0.13 mm a$^{-1}$ deduced from the oldest caves are strikingly similar to the mean incision rate of 0.15 mm a$^{-1}$ from equivalent upstream positions of northern and central Sierra rivers (Wakabayashi and Sawyer, 2001). Furthermore, incision rates from the South Fork Kings River canyon of 0.15 mm a$^{-1}$ averaged over 2.7 Ma (Bat Cave) and 0.12 mm a$^{-1}$ averaged over 2.3 Ma (Morning Glory Cave) closely match an interpolated 5 Ma average rate of 0.13 mm a$^{-1}$ from an equivalent upstream position in the adjacent San Joaquin River canyon (estimated from Huber, 1981). Close correspondence between cave- and volcanically derived incision rates suggests that caves accurately record river incision.

Although similar to earlier estimates, cave-derived incision rates provide additional detail not previously resolvable (Table II). Figure 5 suggests that incision rates have not been steady over the past 5 Ma, either in any one drainage, or for the western slope of the range as a whole. Rather, the caves suggest marked changes in incision rate through time.
Table I. Cosmogenic nuclide concentrations, burial ages, and pre-burial erosion rates from Sierra Nevada caves

<table>
<thead>
<tr>
<th>Sample</th>
<th>Location</th>
<th>River</th>
<th>P<sub>n</sub></th>
<th><sup>30</sup>Al</th>
<th><sup>10</sup>Be</th>
<th><sup>30</sup>Al/<sup>10</sup>Be</th>
<th>Burial age (Ma)<sup>a</sup></th>
<th>Pre-burial erosion (mm a<sup>−1</sup>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS-I</td>
<td>Crystal Stanskius Cave</td>
<td>Middle Fork Stanskius</td>
<td>18.0</td>
<td>26.56 ± 0.98</td>
<td>10.28 ± 0.21</td>
<td>2.59 ± 0.11</td>
<td>1.23 ± 0.08 (0.16)</td>
<td>0.046 ± 0.003 (0.010)</td>
</tr>
<tr>
<td>MG-I</td>
<td>Morning Glory Cave</td>
<td>Boulder Creek</td>
<td>14.4</td>
<td>23.09 ± 1.14</td>
<td>13.30 ± 0.33</td>
<td>1.19 ± 0.12</td>
<td>1.32 ± 0.19 (0.30)</td>
<td>0.021 ± 0.004 (0.010)</td>
</tr>
<tr>
<td>BAT</td>
<td>Bat Cave</td>
<td>South Fork Kings</td>
<td>36.5</td>
<td>11.30 ± 0.97</td>
<td>7.52 ± 0.56</td>
<td>2.52 ± 0.13</td>
<td>2.50 ± 0.19 (0.38)</td>
<td>0.079 ± 0.006 (0.16)</td>
</tr>
<tr>
<td>BOY-2</td>
<td>Boyden Cave</td>
<td>South Fork Kings</td>
<td>32.5</td>
<td>36.41 ± 1.36</td>
<td>12.43 ± 0.30</td>
<td>2.93 ± 0.13</td>
<td>2.38 ± 0.08 (0.15)</td>
<td>0.078 ± 0.005 (0.17)</td>
</tr>
<tr>
<td>BC-1</td>
<td>Bear Cave</td>
<td>South Fork Kings</td>
<td>32.5</td>
<td>56.24 ± 2.61</td>
<td>10.92 ± 0.28</td>
<td>5.15 ± 0.22</td>
<td>0.32 ± 0.10 (0.18)</td>
<td>0.163 ± 0.012 (0.03)</td>
</tr>
<tr>
<td>KGR-1</td>
<td>Modern river sediment</td>
<td>South Fork Kings</td>
<td>32.5</td>
<td>22.68 ± 1.17</td>
<td>2.62 ± 0.07</td>
<td>6.26 ± 0.35</td>
<td>2.11 ± 0.10 (0.21)</td>
<td>0.058 ± 0.003 (0.16)</td>
</tr>
<tr>
<td>WR-1</td>
<td>Weiss Raum Cave</td>
<td>Yucca Creek</td>
<td>16.5</td>
<td>9.46 ± 0.05</td>
<td>5.02 ± 0.12</td>
<td>1.72 ± 0.14</td>
<td>2.42 ± 0.06 (0.28)</td>
<td>0.055 ± 0.002 (0.012)</td>
</tr>
<tr>
<td>HCR-1</td>
<td>Hurricane Crawl Cave</td>
<td>Yucca Creek</td>
<td>16.2</td>
<td>35.23 ± 1.93</td>
<td>9.44 ± 0.34</td>
<td>3.73 ± 0.23</td>
<td>0.93 ± 0.12 (0.24)</td>
<td>0.064 ± 0.005 (0.014)</td>
</tr>
<tr>
<td>CPRD</td>
<td>Bear Den Cave</td>
<td>Cascade Creek</td>
<td>18.7</td>
<td>97.53 ± 4.10</td>
<td>29.81 ± 0.70</td>
<td>3.27 ± 0.16</td>
<td>1.15 ± 0.09 (0.16)</td>
<td>0.031 ± 0.001 (0.005)</td>
</tr>
<tr>
<td>CPRP</td>
<td>Crystal Cave (Phosph. Room)</td>
<td>Cascade Creek</td>
<td>18.7</td>
<td>311.9 ± 8.7</td>
<td>91.8 ± 0.6</td>
<td>3.39 ± 0.14</td>
<td>1.00 ± 0.07 (0.14)</td>
<td>0.009 ± 0.0002 (0.001)</td>
</tr>
<tr>
<td>CCMH1</td>
<td>Crystal Cave (Marble Hall)</td>
<td>Cascade Creek</td>
<td>18.5</td>
<td>79.17 ± 3.41</td>
<td>20.47 ± 0.49</td>
<td>3.87 ± 0.19</td>
<td>0.86 ± 0.09 (0.16)</td>
<td>0.035 ± 0.002 (0.007)</td>
</tr>
<tr>
<td>CCLR1</td>
<td>Crystal Cave (Junction Room)</td>
<td>Cascade Creek</td>
<td>18.5</td>
<td>107.2 ± 3.5</td>
<td>23.79 ± 0.56</td>
<td>4.51 ± 0.18</td>
<td>0.56 ± 0.08 (0.15)</td>
<td>0.034 ± 0.003 (0.009)</td>
</tr>
<tr>
<td>KWH-1</td>
<td>Kawash River</td>
<td>Middle Fork Kawash</td>
<td>16.7</td>
<td>73.6 ± 0.78</td>
<td>1.49 ± 0.25</td>
<td>4.94 ± 0.99</td>
<td>0.40 ± 0.38 (0.85)</td>
<td>0.527 ± 0.093 (0.060)</td>
</tr>
<tr>
<td>KHR-1</td>
<td>Modern river sediment</td>
<td>Middle Fork Kawash</td>
<td>22.0</td>
<td>35.25 ± 1.65</td>
<td>5.90 ± 0.16</td>
<td>5.90 ± 0.16</td>
<td>0.04 ± 0.10 (0.18)</td>
<td>0.202 ± 0.015 (0.043)</td>
</tr>
<tr>
<td>PLMR-1</td>
<td>Palmer River</td>
<td>South Fork Kawash</td>
<td>18.5</td>
<td>55.2 ± 1.2</td>
<td>2.34 ± 0.14</td>
<td>2.34 ± 0.14</td>
<td>1.00 ± 0.07 (0.14)</td>
<td>0.009 ± 0.0002 (0.001)</td>
</tr>
<tr>
<td>CL</td>
<td>Clough River</td>
<td>South Fork Kawash</td>
<td>21.3</td>
<td>73.8 ± 0.48</td>
<td>2.09 ± 0.07</td>
<td>3.51 ± 0.25</td>
<td>1.03 ± 0.13 (0.28)</td>
<td>0.354 ± 0.026 (0.075)</td>
</tr>
<tr>
<td>NEW-1</td>
<td>New Cave</td>
<td>South Fork Kawash</td>
<td>21.3</td>
<td>54.44 ± 2.44</td>
<td>13.85 ± 0.33</td>
<td>3.93 ± 0.20</td>
<td>0.83 ± 0.10 (0.18)</td>
<td>0.059 ± 0.004 (0.013)</td>
</tr>
<tr>
<td>LSRRH1</td>
<td>Soldiers Cave (Entrance Room)</td>
<td>South Fork Kawash</td>
<td>18.9</td>
<td>50.24 ± 3.24</td>
<td>15.94 ± 0.38</td>
<td>3.15 ± 0.22</td>
<td>1.25 ± 0.13 (0.20)</td>
<td>0.038 ± 0.003 (0.008)</td>
</tr>
<tr>
<td>LSWR1</td>
<td>Soldiers Cave (Waiting Room)</td>
<td>South Fork Kawash</td>
<td>18.9</td>
<td>73.16 ± 2.97</td>
<td>19.63 ± 0.49</td>
<td>3.64 ± 0.18</td>
<td>0.98 ± 0.09 (0.17)</td>
<td>0.035 ± 0.002 (0.005)</td>
</tr>
<tr>
<td>LSLC1</td>
<td>Soldiers Cave (Lower Corridor)</td>
<td>South Fork Kawash</td>
<td>18.9</td>
<td>7393 ± 32.1</td>
<td>15.03 ± 0.16</td>
<td>4.92 ± 0.24</td>
<td>0.40 ± 0.09 (0.17)</td>
<td>0.059 ± 0.004 (0.010)</td>
</tr>
</tbody>
</table>

* Some of these data were originally reported in Stock et al. (2004).
* Basin mean ¹⁰Be production rate from basin hypsometry upstream of caves multiply by 6-1 to get mean ³⁰Al production rate (Nishiizumi et al., 1989; Stone, 2000). Production rates scaled for altitude and latitude following Stone (2000) for neutrons and Granger et al. (2001a) for muons, assuming sea-level high latitude (SUHL) production rates of P_n = 3.1·10⁴ atom g^{−1} a^{−1} and P_n = 5.1·10⁴ atom g^{−1} a^{−1} (Stone, 2000), and SUHL stopped muogenic production rates of P_n = 0.80 atom g^{−1} a^{−1} and P_n = 0·10 atom g^{−1} a^{−1} (Heisinger et al., 2002b).
* Measured ³⁰Al/³⁰Al and ¹⁰Be/³⁰Al ratios were normalized to ICN ¹⁰Be and NBS ³⁰Al standards prepared by K. Nishiizumi. Measured ratios were converted to atom g^{−1} using the amount of Be carrier added and by measuring stable Al measurements on an ICP-OES. Stable Al measurements were assigned 4% error.
* Burial ages calculated using Equations 1–3. Uncertainties represent ±1σ measurement uncertainty with systematic uncertainties in production rates, attenuation coefficients, ³⁰Al/¹⁰Be production ratio, and decay constants (Norrish et al., 1983; Middleton et al., 1993) added in quadrature and shown in parentheses. We report burial ages based on the commonly accepted ICN ¹⁰Be standard, and a ³⁰Al mean age of 2·1±0.09 My. Some researchers (e.g. Partridge et al., 2003) have adopted an alternative NST ¹⁰Be standard, and a mean age of 1·93±0.10, which would increase our reported burial ages for example, the age for Bat Cave based on the NST standard is 2·90±0.21 (0-49).
Figure 4. Cosmogenic nuclide data from buried cave sediments and surface bedrock samples, plotted logarithmically as \(^{26}\text{Al}/^{10}\text{Be}\) versus \(^{10}\text{Be}\) concentration. \(^{10}\text{Be}\) concentrations normalized for local production rate, assuming sea-level, high-latitude \(^{10}\text{Be}\) production rate of 5·1 atom g\(^{-1}\) a\(^{-1}\) (Stone, 2000). Samples with simple history of exposure and steady erosion plot within shaded area between constant exposure and steady erosion lines (Lal, 1991; Granger and Muzikar, 2001). Once buried, \(^{26}\text{Al}/^{10}\text{Be}\) in sediment decreases exponentially, parallel to dashed radioactive decay line. Burial isochrons shown at million year intervals. Open circles, unburied river sediment; open squares, surface bedrock samples. See Figure 5 for other symbol descriptions. Error bars represent 1\(\sigma\) analytical uncertainty.

Figure 5. Five-million-year incision history for central and southern Sierra Nevada rivers determined by cosmogenic \(^{26}\text{Al}/^{10}\text{Be}\) burial dating of cave sediments. Unburied river sediments (shown as open symbols) yield burial ages indistinguishable from zero, suggesting no inherited burial signal in cave sediments. Dashed line denotes average range-wide incision rate based on incision through c. 5 Ma uppermost Mehrten Formation (Wakabayashi and Sawyer, 2001). Sample PLMR-1 yields a minimum age of 4·72 Ma. Caves show a pulse of rapid incision from c. 3 to 1·5 Ma (shaded area), followed by much slower incision, a change evident across the study transect. Error bars represent 1\(\sigma\) analytical uncertainty.
inner gorges set within deeper and wider canyons (Figures 6–9; Matthes, 1960; Bateman and Wahrhaftig, 1966),
abruptly at incision appears to have begun in Late Pliocene time.

For example, the South Fork Kings River incised at 0·27 mm a\(^{-1}\) from 2·7 to 1·4 Ma but slowed markedly to c. 0·02 mm a\(^{-1}\) after 1·4 Ma (Figure 6). Similarly, multiple dated cave levels in the South Fork Kaweah River canyon document incision peaking at c. 1 Ma at 0·35 mm a\(^{-1}\), slowing thereafter to rates of 0·05–0·03 mm a\(^{-1}\) (Figure 7). In Yucca Creek canyon, a tributary of the North Fork Kaweah River, an incision rate of 0·12 mm a\(^{-1}\) from 2·4 to 0·9 Ma slowed to 0·04 mm a\(^{-1}\) after 0·9 Ma (Figure 8). Nearby Cascade Creek also shows a decrease in incision from 0·18 to 0·02 mm a\(^{-1}\) over the past 1·2 Ma. In all of the southern Sierra Nevada canyons studied, caves younger than 1 Ma consistently yield low incision rates of 0·02 to 0·05 mm a\(^{-1}\) (Table II, Figure 5).

Further north in the Stanislaus River canyon, a cave-derived incision history overlaps with that derived from the 9·2 Ma Table Mountain Latite (TML) erupted near the crest of the range and emplaced within the ancestral Stanislaus River canyon. Following deposition of the TML, the Stanislaus River has incised some 550 m, most of which is within a narrow gorge (Figure 9). Crystal Stanislaus Cave indicates that inner gorge incision was well underway prior to 1·6 Ma. Although the record here suggests little change in incision rate since 9·2 Ma (Figure 9), it is determined by only two points, leading to substantial time-averaging; a similar temporal pattern of incision as that shown by caves further south is certainly plausible at this location. Thus, cave-derived incision rates consistently show a pulse of incision that began in the Late Pliocene and had decreased considerably by 1·5 Ma. That this pattern is documented across much of the range suggests that rivers are responding to a range-wide perturbation.

Onset of renewed incision and inner gorge formation

Because few caves containing datable sediment exist outside of the inner gorges, our data do not clearly show when the most recent phase of accelerated incision began at the cave sites, only that it was underway by 2·7 Ma. However, the minimum age of 4·72 Ma for Palmer Cave, the one dated cave located above the inner gorges (Figure 7), does suggest a maximum early Pliocene incision rate of 0·07 mm a\(^{-1}\) (Figure 5); if Palmer Cave is in fact much older than 4·72 Ma, then early Pliocene incision was much slower than 0·07 mm a\(^{-1}\). Thus, the most recent phase of accelerated incision appears to have begun in Late Pliocene time.

Landscape morphology suggests that the switch to more rapid incision occurred midway up river profiles rather abruptly at c. 3 Ma. Most southern Sierra Nevada river canyons display a prominent two-tiered structure, with narrow inner gorges set within deeper and wider canyons (Figures 6–9; Matthes, 1960; Bateman and Wahrhaftig, 1966),

Table II. River incision rates from Sierra Nevada caves

<table>
<thead>
<tr>
<th>Sample</th>
<th>Location</th>
<th>River</th>
<th>Cave height(^c) (m)</th>
<th>Burial age (Ma)</th>
<th>River incision(^d) (mm a(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS-1</td>
<td>Crystal Stanislaus Cave</td>
<td>Middle Fork Stanislaus</td>
<td>90 ± 5 (92)</td>
<td>1·63 ± 0·08</td>
<td>0·06 ± 0·01</td>
</tr>
<tr>
<td>MG-1</td>
<td>Morning Glory Cave</td>
<td>Boulder Creek</td>
<td>274 ± 5</td>
<td>2·32 ± 0·19</td>
<td>0·12 ± 0·01</td>
</tr>
<tr>
<td>BAT</td>
<td>Bat Cave</td>
<td>South Fork Kings</td>
<td>395 ± 2</td>
<td>2·70 ± 0·21</td>
<td>0·27 ± 0·04</td>
</tr>
<tr>
<td>BOY-2</td>
<td>Boyden Cave</td>
<td>South Fork Kings</td>
<td>42·5 ± 1</td>
<td>1·38 ± 0·08</td>
<td>0·03 ± 0·01</td>
</tr>
<tr>
<td>BC-1</td>
<td>Bear Cave</td>
<td>South Fork Kings</td>
<td>8 ± 1</td>
<td>0·32 ± 0·10</td>
<td>0·02 ± 0·01</td>
</tr>
<tr>
<td>WR-1</td>
<td>Weis Raum Cave</td>
<td>Yucca Creek</td>
<td>212 ± 2</td>
<td>2·42 ± 0·16</td>
<td>0·12 ± 0·02</td>
</tr>
<tr>
<td>HCPL-2</td>
<td>Hurricane Crawl Cave</td>
<td>Yucca Creek</td>
<td>36 ± 3 (39·5)</td>
<td>0·93 ± 0·12</td>
<td>0·04 ± 0·01</td>
</tr>
<tr>
<td>CCBD</td>
<td>Bear Den Cave</td>
<td>Cascade Creek</td>
<td>58 ± 1</td>
<td>1·15 ± 0·09</td>
<td>0·14 ± 0·08</td>
</tr>
<tr>
<td>CCMH-1</td>
<td>Crystal Cave (Phosph. Room)</td>
<td>Cascade Creek</td>
<td>36·5 ± 1</td>
<td>1·00 ± 0·07</td>
<td>0·10 ± 0·06</td>
</tr>
<tr>
<td>CCLR-1</td>
<td>Crystal Cave (Marble Hall)</td>
<td>Cascade Creek</td>
<td>22·5 ± 1</td>
<td>0·86 ± 0·09</td>
<td>0·05 ± 0·02</td>
</tr>
<tr>
<td>KWH-1</td>
<td>Kaweah Cave</td>
<td>Middle Fork Kaweah</td>
<td>15 ± 1</td>
<td>0·40 ± 0·38</td>
<td>0·04 ± 0·04</td>
</tr>
<tr>
<td>PLMR-1</td>
<td>Palmer Cave</td>
<td>South Fork Kaweah</td>
<td>645 ± 10</td>
<td>≥4·72</td>
<td>≤0·16</td>
</tr>
<tr>
<td>LSRH-1</td>
<td>Soldiers Cave (Entrance Room)</td>
<td>South Fork Kaweah</td>
<td>84 ± 2</td>
<td>1·25 ± 0·13</td>
<td>0·14 ± 0·09</td>
</tr>
<tr>
<td>CL</td>
<td>Clough Cave</td>
<td>South Fork Kaweah</td>
<td>53·5 ± 2</td>
<td>1·03 ± 0·13</td>
<td>0·31 ± 0·70</td>
</tr>
<tr>
<td>LSWR-1</td>
<td>Soldiers Cave (Waiting Room)</td>
<td>South Fork Kaweah</td>
<td>38 ± 4 (41)</td>
<td>0·98 ± 0·09</td>
<td>–</td>
</tr>
<tr>
<td>NEW-1</td>
<td>New Cave</td>
<td>South Fork Kaweah</td>
<td>34 ± 2</td>
<td>0·83 ± 0·10</td>
<td>0·06 ± 0·02</td>
</tr>
<tr>
<td>LSLC-1</td>
<td>Soldiers Cave (Lower Corridor)</td>
<td>South Fork Kaweah</td>
<td>10 ± 3 (12·5)</td>
<td>0·40 ± 0·09</td>
<td>0·03 ± 0·01</td>
</tr>
</tbody>
</table>

\(^c\) Cave height above local base level river based on inferred palaeowater table gradients; where different, absolute heights are shown in parentheses. Height error combines survey error and palaeowater table gradient uncertainty.

\(^d\) For tiered caves, incision rates are calculated using the distance between cave passages (see Figures 6–9); for example, the distance between palaeowater table levels inferred from Weis Raum and Hurricane Crawl caves (176 m) yields an incision rate of 0·12 ± 0·02 mm a\(^{-1}\) for the period 2·42 to 0·93 Ma.
suggesting a two-phase erosional history. Inner gorge structures generally indicate rapid incision following a prolonged period of stable base level of erosion (Bull, 1991). Although large tributary streams with high stream power enter inner gorges at grade, smaller tributaries with lower stream power are perched above modern rivers, marking the river position before inner gorge development. In their middle reaches, tributary streams entering southern Sierra river canyons typically exhibit smooth concave profiles below upland surfaces, as expected for graded streams at their base level of erosion (Bull, 1991). In contrast, the lower reaches display prominent convexities as they drop steeply into inner gorges. The heights at which tributaries ‘hang’ above modern rivers vary depending on their upstream position along river profiles, but are generally between 350 and 500 m. Note that these are not hanging valleys formed by glacial erosion, as these tributaries are well downstream of the maximum glacial extent. Tributaries in the San Joaquin River canyon descend from upland surfaces into broad, low-gradient canyons before cascading some 450–480 m into the inner gorge of that canyon (Matthes, 1960). Although Matthes posited a Pleistocene age for this inner gorge (corresponding to his Canyon stage of erosion), the onset of incision has, until now, been essentially unconstrained. However, at the cave site in the South Fork Kings River canyon, tributaries exhibiting concave middle profiles ‘hang’ above the modern river c. 350–400 m (Figure 10). This is similar to the height of Bat Cave (395 m), suggesting that the 2.7 ± 0.2 Ma age for Bat Cave marks the onset of more rapid incision at this point midway up the river profile. In

Figure 6. Dated caves and incision rates in South Fork Kings River canyon. (A) Topographic profile across South Fork Kings River canyon showing c. 2 km local relief. (B) Inner gorge containing multiple dated caves. Long-term rate of incision based on oldest dated cave (2.7 Ma Bat Cave) of 0.15 mm a⁻¹ matches well rates derived from incision through 5 Ma volcanic flows (Wakabayashi and Sawyer, 2001). However, younger caves reveal fast incision before 1.4 Ma followed by an order of magnitude decline in incision rate after. Although caves demonstrate 395 m of canyon incision since 2.7 Ma, larger context shown in (A) illustrates that this represents only c. 20 per cent of present local relief.
Figure 7. Dated caves and incision rates in the South Fork Kaweah River canyon. (A) Topographic profile across South Fork Kaweah River canyon showing c. 1 km local relief. Buried sediments in Palmer Cave yield a minimum age of 4.72 Ma and thus a maximum long-term incision rate of 0.14 mm a\(^{-1}\); this rate is also a maximum because no palaeowater table gradient is inferred. (B) Inner gorge containing multiple dated cave levels. Inferred palaeowater table gradients shown as dashed lines. Distance between dated intervals indicates a pulse of incision peaking at 0.35 mm a\(^{-1}\) before 1 Ma and falling to 0.03 mm a\(^{-1}\) after 0.4 Ma. Note that the palaeowater table gradient inferred from the Waiting Room of Soldiers Cave projects to the level of New Cave; the 0.83 Ma age of New Cave is used to calculate the incision rate because it is closer to the river and is a therefore more precise marker of former river level.

This and other canyons, younger caves demonstrate that inner gorges were deeply incised by 1 Ma (Figures 6–9). We hypothesize that initial canyon incision was followed by a prolonged period of stable local base level, during which time tributary streams became graded. Renewed incision at the cave sites beginning at 3 Ma swiftly lowered local base level by 300–400 m, an event to which all but the largest tributaries are still responding. Slow propagation of the erosional pulse into adjacent uplands has helped to maintain the broad interfluve surfaces (Figure 2).

Pre-burial erosion rates

In addition to burial ages, iterative solution of Equations 1–3 yields nuclide concentrations in sediment prior to burial (Table I, Figure 4). These may be interpreted either in terms of the rate of basin erosion or as the duration of sediment transport and/or storage in the fluvial system (e.g. Anderson et al., 1996; Granger et al., 1996; Schaller et al., 2001). We interpret pre-burial concentrations as basin erosion rates because sediment transport is likely rapid in the steep catchments upstream of the sampled caves.

Pre-burial erosion rates range widely from 0.007 to 0.35 mm a\(^{-1}\) (Table I, Figure 4). Although this variation may reflect real erosion rate variations due to different surface processes acting in basins of varying size, we suspect that it is at least partially influenced by our sampling. Nuclide concentrations in numerous sand grains record basin-averaged erosion rates because the grains are assumed to derive uniformly from across the basin. However, because the origin of sand in caves may be ambiguous, and because coarse clasts clearly indicate bedload transport and are unlikely to be
remobilized, we sampled single cobbles or coarse gravel (typically <30 clasts) for burial dating. While this strategy helps to ensure accurate cave ages, it limits the usefulness of pre-burial nuclide concentrations, as single clasts may not estimate well the average basin erosion rate. To test this, we chose two caves originally dated by a single clast, created replicate samples by amalgamating additional clasts from the same deposits, and then processed as above. Replicate samples yielded burial ages identical within analytical error to the original samples, but in both cases incorporating additional clasts increased pre-burial rates of erosion (Table III). Although the number of clasts analysed in the replicate samples do not provide statistically robust mean erosion rates (Anderson et al., 1996), these preliminary results do suggest a reduction in basin erosion after 1.2 Ma, consistent with the overall trend established by the burial ages. Future work utilizing >30 clasts will better constrain both burial ages and pre-burial erosion rates.

Additional uncertainty in pre-burial erosion rates results from the fact that most of the studied caves draw sediment from large catchments with hundreds to thousands of metres of relief, and we have no independent knowledge of where within these basins the few clasts we analysed originated. Most studies use the modern basin hypsometry to calculate a mean production rate for each catchment (e.g. Schaller et al., 2002). While we have employed this method (Table I), taking into account relief changes indicated by the older caves (see below), we acknowledge the additional uncertainty in pre-burial erosion rates introduced by potentially large changes in basin hypsometry, and perhaps mean altitude, since deposition of the older cave sediments.

Despite these uncertainties, Figure 4 shows that the majority of pre-burial erosion rates fall between 0.01 and 0.1 mm a⁻¹, with a mean ± s.e. of 0.09 ± 0.002 mm a⁻¹. This indicates that, as expected, cave sediments derive from hillslopes eroding at rates bracketed by relatively fast canyon incision (up to 0.3 mm a⁻¹) and much slower upland erosion (c. 0.01 mm a⁻¹; see below).

Estimates of Palaeorelief

The positions of dated caves in the landscape provide estimates of local palaeorelief, i.e. the amount of local relief present when the caves formed (Table IV). For example, the depth of the South Fork Kings Canyon prior to 2.7 Ma was at least 1600 m, the distance from the highest dated cave (Bat Cave) to the adjacent north rim of the canyon near
Figure 9. Dated caves and incision rates in the Stanislaus River canyon. (A) Topographic profile across Stanislaus River canyon showing c. 750 m local relief. Table Mountain Latite (TML) erupted near Sierra Nevada crest and flowed down ancestral Stanislaus River canyon c. 9.2 Ma (Dalrymple, 1964), preserving river position at that time. Topographic inversion has left TML as a meandering tableland; subsequent river incision cut c. 400 m deep inner gorge. Depth of river below TML yields 9.2 Ma average incision rate of 0.05 mm a$^{-1}$, a minimum estimate as no initial canyon relief is assumed. (B) Crystal Stanislaus Cave, 1.6 Ma old, located well within inner gorge, yields incision rate of 0.03 mm a$^{-1}$ from 9.2 to 1.6 Ma, and 0.06 mm a$^{-1}$ thereafter.

Table III. Dependence of sample size on pre-burial erosion rates

<table>
<thead>
<tr>
<th>Cave</th>
<th>Sample</th>
<th>n^a</th>
<th>Burial age (Ma)</th>
<th>Pre-burial erosion rate (mm a$^{-1}$)</th>
<th>Differenceb (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystal (Bear Den)</td>
<td>CCBD-1</td>
<td>1</td>
<td>1.16 ± 0.09</td>
<td>0.021 ± 0.001</td>
<td>64.5</td>
</tr>
<tr>
<td>Crystal</td>
<td>CCBD-2</td>
<td>12</td>
<td>1.14 ± 0.09</td>
<td>0.040 ± 0.003</td>
<td></td>
</tr>
<tr>
<td>Crystal (Phosphorescent)</td>
<td>CCPR-1</td>
<td>1</td>
<td>1.06 ± 0.07</td>
<td>0.007 ± 0.004</td>
<td>35.3</td>
</tr>
<tr>
<td></td>
<td>CCPR-2</td>
<td>8</td>
<td>0.94 ± 0.07</td>
<td>0.010 ± 0.007</td>
<td></td>
</tr>
</tbody>
</table>

a Number of sediment clasts in sample.

b Percentage difference of amalgamated sample from original single clast sample.

Wren Peak (Figures 3, 6A). Caves in other drainages also show substantial (400–1100 m) local palaeorelief (Table IV, Figures 7A–9A). These estimates are minima because they assume no lowering of rim elevations since caves formed.

Considerable (1–1.5 km) pre-Pliocene relief in the southern Sierra agrees well with independent observations. For example, the Tuolumne River canyon (Figure 1) contains late Cenozoic deposits inset hundreds of metres below basement bedrock ridges. Reconstruction of the 10 Ma San Joaquin River channel suggests ≥1000 m of palaeorelief in parts of that canyon (Huber, 1981; Wakabayashi and Sawyer, 2001). Dated volcanic flows in the upper San Joaquin River region indicate that, prior to 3.5 Ma, canyons were at least 150 m deep and nearly 1500 m of relief was present near the range crest (Dalrymple, 1964). Canyons in the Kern River region were at least 240 m deep c. 3.5 Ma, while relief near the crest was c. 1400 m (Dalrymple, 1963). Palaeorelief increases from north to south (Wakabayashi and Sawyer, 2001),
coinciding with a similar increase in modern relief along the study transect (Figure 1B). In the north, the narrow inner gorges represent the majority of canyon depth, while in the south they are set into the bottoms of broad, deep canyons.

If the most recent episode of rock uplift commenced c. 3.5–5 Ma, as many researchers suggest (Unruh, 1991; Manley et al., 2000; Wakabayashi and Sawyer, 2001; Jones et al., 2004), then up to 2 km of incision at very rapid rates (2 mm a−1) before 3.5 Ma must be invoked to produce all of the present local relief. Tributary stream profiles do not suggest such rapid incision, nor does the minimum age of 4.72 Ma for Palmer Cave (Figure 5). Sustained rapid incision throughout the Pliocene is therefore unlikely, signifying that the southern Sierra was already an elevated, moderately high relief landscape prior to renewed uplift (Wakabayashi and Sawyer, 2001) and maintained altitudes sufficient to cast a significant rain shadow since at least the Miocene (Poage and Chamberlain, 2002). In fact, much of the present topography in the southern Sierra could be relict from a pre-Eocene episode of uplift, possibly even from the Late Cretaceous (Wakabayashi and Sawyer, 2001). Although the early history of incision remains unclear, inset caves and volcanic deposits indicate at least a two-phase incision history with the most recent phase beginning c. 3 Ma.

Table IV. Estimates of Sierra Nevada local palaeorelief

<table>
<thead>
<tr>
<th>River</th>
<th>Cave</th>
<th>Burial age (Ma)</th>
<th>Modern local reliefa (m)</th>
<th>Local palaeoreliefb (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stanislaus</td>
<td>Crystal</td>
<td>1.63 ± 0.08</td>
<td>700</td>
<td>600</td>
</tr>
<tr>
<td>Boulder Creek</td>
<td>Morning Glory</td>
<td>2.34 ± 0.19</td>
<td>1850</td>
<td>1580</td>
</tr>
<tr>
<td>South Fork Kings</td>
<td>Bat</td>
<td>2.70 ± 0.21</td>
<td>2000</td>
<td>1600</td>
</tr>
<tr>
<td>Cascade Creek</td>
<td>Bear Den</td>
<td>1.17 ± 0.09</td>
<td>480</td>
<td>420</td>
</tr>
<tr>
<td>Yucca Creek</td>
<td>Weis Raum</td>
<td>2.42 ± 0.16</td>
<td>610</td>
<td>400</td>
</tr>
<tr>
<td>Middle Fork Kaweah</td>
<td>Kaweah</td>
<td>0.40 ± 0.38</td>
<td>1390</td>
<td>1350</td>
</tr>
<tr>
<td>South Fork Kaweah</td>
<td>Palmer</td>
<td>3.72 ± 12</td>
<td>1450</td>
<td>2750</td>
</tr>
<tr>
<td>South Fork Kaweah</td>
<td>Clough</td>
<td>1.25 ± 0.13</td>
<td>1450</td>
<td>1360</td>
</tr>
</tbody>
</table>

a Present local relief is the maximum distance from canyon bottom to adjacent canyon rim within 5 km of cave sites.

b Local palaeorelief is distance from highest dated cave to adjacent canyon rim within 5 km of cave sites. Palaeorelief estimates are minima because they assume no lowering of rim altitudes.

Figure 10. Longitudinal profiles of tributary streams entering South Fork Kings River canyon. Tributary streams show prominent convex steps in otherwise concave profiles as they cascade steeply into inner gorge. Tributary convexities ‘hang’ c. 350–400 m above river, similar to height of 2.7 Ma Bat Cave, suggesting a prolonged period of stable base level followed by rapid incision beginning c. 3 Ma. Marble belt shown in dark grey (green in colour version online). BAT, Bat Cave; BC, Boulder Creek; GF, Garlic Falls; GMC, Garlic Meadow Creek; MFK, Middle Fork Kings River; SFK, South Fork Kings River; TMC, Tenmile Creek. This figure is available in colour online at www.interscience.wiley.com/journal/espl
Upland Erosion Rates and Relief Production

Many of the arguments for and against late Cenozoic uplift depend on whether topographic relief increased or decreased. For example, the flexural–isostatic rock uplift mechanism requires an increase in relief (Small and Anderson, 1995, 1998; Molnar and England, 1990). However, based on apatite (U-Th)/He thermochronometry, House et al. (1998) posited that high local relief c. 60–80 Ma decreased monotonically since that time; by inference, crestal elevations also decreased, and no late Cenozoic uplift is called for. Poage and Chamberlain (2002) also suggest a late Cenozoic decrease in crestal elevation; because relief production would drive at least some flexural–isostatic uplift of summits, the crestal elevation loss scenario advocated by Poage and Chamberlain (2002) also requires a loss of relief.

Any decrease in relief demands that erosion of upland (interfluve and summit) surfaces outpaces river incision. Thus, quantitative constraints on both canyon and upland erosion are needed to test for relief production. Caves dated by 26Al/10Be provide rates of canyon deepening. To determine rates of erosion on the immediately adjacent upland surfaces, we measured concentrations of 26Al and 10Be in granitic rocks exposed on these surfaces. Because the cosmic ray flux that produces cosmogenic nuclides decreases exponentially with depth below the Earth’s surface, accumulated 26Al and 10Be concentrations in the top few centimetres of bare bedrock surfaces record the long-term erosion rates of these surfaces (e.g. Lal, 1991; Small et al., 1997; Granger et al., 2001a; Bierman and Caffee, 2002).

We sampled four interfluve surfaces along the study transect separating the major river canyons (Figure 1). Most interfluve surfaces are composed of low-relief upland topography with minimal shielding (Figures 2, 11). Sample sites are located several kilometres from incised river canyons (Figure 1), and were not glaciated during the late Pleistocene or Holocene (Matthes, 1960, 1965). We collected c. 100 g of granitic rock from each site, typically as thin (1–3 cm) exfoliation slabs, and measured their 26Al and 10Be concentrations as above. We used Equation 1 to calculate erosion rates, determining the contribution of muons following Granger et al. (2001a), though we note that for slowly eroding

Figure 11. Beetle Rock, a granitic dome on interfluve surface separating Kaweah River canyons. Bare bedrock interfluve surfaces along study transect were not glaciated during Pleistocene; lack of regolith cover suggests erosion is limited by efficiency of weathering processes. Concentrations of 26Al and 10Be yield an erosion rate of 0.003 mm a$^{-1}$ averaged over c. 145 ka for this surface; such low rates of erosion typify upland surfaces. Rock hammer and compass for scale. This figure is available in colour online at www.interscience.wiley.com/journal/espl
surfaces the contribution of muons is low because radioactive decay has reduced the fraction of nuclides produced by muons at depth.

Aluminium-26 and 10Be concentrations from sampled bedrock surfaces plot within 1σ of the model curves for steady erosion or constant exposure (Figure 4), suggesting no extended burial of interfluve surfaces. Consequently, nuclide concentrations are interpreted to reflect bedrock erosion rates ranging from 0·003 to 0·019 mm a⁻¹ (Table V). Erosion rates are averaged over a characteristic erosional timescale of Ap⁻¹ε⁻¹, the time required to erode a layer of rock c. 60 cm thick; erosional timescales for bedrock samples range from 160 to 30 ka (Table V). These values yield a mean erosion rate for Sierra Nevada interfluve surfaces of 0·010 ± 0·001 mm a⁻¹ averaged over 86·5 ± 6·4 ka (mean ± s.e.). Such slow rates are comparable to those measured immediately east of the crest in the northern (mean 0·011 mm a⁻¹; Granger et al., 2001a) and southern (0·003 mm a⁻¹, Small et al., 1997) Sierra Nevada, in the adjacent Owens Valley (0·007 mm a⁻¹; Bierman, 1994), and in other North American granitic alpine environments (mean 0·007 mm a⁻¹; Small et al., 1997) over equivalent timescales.

That many upland surfaces are bare bedrock indicates that erosion is not limited by transport of regolith. Rather, erosion is apparently limited by the rate at which bedrock is weathered (Small et al., 1997). We posit that the weathering-limited erosion rates of upland surfaces were roughly steady over the past few million years. Our basis for this assumption is threefold. First, interfluve sample sites are far from adjacent canyons, so that their rates of erosion have been effectively isolated from inner gorge incision (e.g. Small and Anderson, 1998; Riebe et al., 2000; Anderson, 2002). Temporal changes in interfluve erosion rates must therefore be driven by changes in the weathering climate. However, climatic effects appear to exert minimal control on erosion rates of non-glaciated granitic surfaces in the Sierra Nevada (Riebe et al., 2001). Furthermore, because two of the erosion rate measurements are averaged over ≥100 ka, they encompass erosion rate variations over a full glacial–interglacial cycle. As such, these low rates are likely representative of rates over at least the Quaternary. Finally, preservation of 3·5 to 12 Ma volcanic flows on the broad Kings and San Joaquin interfluves suggest that these surfaces have not been deeply eroded in the past few million years (Jones et al., 2004).

If this reasoning is correct, a long-term picture of relief production emerges. Although the Great Valley sedimentation history, and palaeoecotopography implied by (U-Th)/He thermochronometry suggests rapid incision and relief production during the Cretaceous (House et al., 1998), by Oligocene time river incision rates in the northern Sierra were extremely low at c. 0·003 mm a⁻¹ (Wakabayashi and Sawyer, 2001). If uplands were contemporaneously eroding three to four times faster, at c. 0·01 mm a⁻¹, then local relief should have decreased between the Eocene and Pliocene by c. 500 m. A sharp increase in river incision rates to c. 0·3 mm a⁻¹ from c. 3 to 1·5 Ma outpaced upland erosion by more than an order of magnitude, rejuvenating relief by incising inner gorges. Since 1·5 Ma, local relief has increased more slowly, as incision outpaced interfluve erosion by only factors of two to four. Thus, although relief may have diminished throughout much of the Cenozoic, relief production has dominated since the Late Pliocene and continues today.

Our data do not support the notion that relief has decreased monotonically throughout the Cenozoic, although they do allow an extended period of relief reduction prior to the Late Pliocene (House et al., 1998). Because relief production likely incited rock uplift through flexural–isostatic compensation (Molnar and England, 1990; Small and Anderson, 1995), and because rock uplift at the crest likely outpaced local weathering rates there, the altitude of the Sierra crest has probably increased over the past few million years. This runs counter to the proposed loss of crestal altitude during this time inferred from stable isotopes in weathering products east of the crest (Poage and Chamberlain, 2002). Given that this time period coincides with marked global climate change (e.g. Raymo, 1994; Haug et al., 1999; Zachos et al., 2001), including the probable onset of glaciation in the Sierra, the apparent decrease in the rain shadow inferred from stable isotopes may result instead from poorly constrained climatic factors, such as changing storm tracks and/or the seasonality of precipitation over glacial–interglacial timescales, rather than decreasing crestal altitudes.

Discussion

Tectonic versus climatic forcing of incision

Distinguishing between tectonic and climatic forcing of erosion remains a key unresolved issue in geomorphic studies. The apparent pulse of incision in Sierra Nevada river canyons beginning c. 3 Ma could plausibly be due to either factor, as it coincides in time with both purported Pliocene uplift and marked changes in late Cenozoic climate (Zachos et al., 2001), including a major intensification of northern hemisphere glaciation. In fact, the erosional pulse could reflect any combination of the rock uplift pattern, a transient erosional response to rock uplift, or climate changes modulating river discharge and sediment supply.
Table V. Cosmogenic nuclide concentrations and bedrock erosion rates for Sierra Nevada interfluve surfaces

<table>
<thead>
<tr>
<th>Sample</th>
<th>Location</th>
<th>Altitude (m)</th>
<th>Latitude (°N)</th>
<th>26Al (105 atom g$^{-1}$)</th>
<th>10Be (105 atom g$^{-1}$)</th>
<th>26Al/10Be (mm a$^{-1}$)</th>
<th>26Al erosionb (mm a$^{-1}$)</th>
<th>10Be erosionb,c (mm a$^{-1}$)</th>
<th>26Al aged (ka)</th>
<th>10Be aged (ka)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR-1</td>
<td>Hanging Rock</td>
<td>1975</td>
<td>36.53</td>
<td>42.85 ± 1.58</td>
<td>8.12 ± 0.18</td>
<td>5.28 ± 0.23</td>
<td>0.014 ± 0.003</td>
<td>0.013 ± 0.002</td>
<td>41.7 ± 9</td>
<td>45.7 ± 9</td>
</tr>
<tr>
<td>BR-1</td>
<td>Beetle Rock</td>
<td>1948</td>
<td>36.54</td>
<td>43.14 ± 4.96</td>
<td>28.17 ± 0.59</td>
<td>5.08 ± 0.21</td>
<td>0.004 ± 0.001</td>
<td>0.003 ± 0.001</td>
<td>144.6 ± 31</td>
<td>163.2 ± 34</td>
</tr>
<tr>
<td>BVD-1</td>
<td>Buena Vista Dome</td>
<td>2294</td>
<td>36.70</td>
<td>38.74 ± 1.35</td>
<td>6.85 ± 0.19</td>
<td>5.66 ± 0.25</td>
<td>0.020 ± 0.004</td>
<td>0.019 ± 0.004</td>
<td>29.3 ± 6</td>
<td>30.7 ± 6</td>
</tr>
<tr>
<td>DC-1</td>
<td>Markwood Meadow</td>
<td>1790</td>
<td>37.05</td>
<td>96.75 ± 3.03</td>
<td>18.71 ± 0.32</td>
<td>5.17 ± 0.18</td>
<td>0.006 ± 0.001</td>
<td>0.005 ± 0.001</td>
<td>91.9 ± 10</td>
<td>106.2 ± 11</td>
</tr>
</tbody>
</table>

Mean ± s.e. 0.011 ± 0.001 0.010 ± 0.001 76.9 ± 5.7 86.5 ± 6.4

a Some of these data were originally reported in Stock et al. (2004).

b Erosion rates calculated using Equation 1 assuming SLHL neutron production rates of $P_{26} = 31·1$ atom g$^{-1}$ a$^{-1}$ and $P_{10} = 5·1$ atom g$^{-1}$ a$^{-1}$ (Stone, 2000), and stopped muogenic production rates of $P_{26} = 0·80$ atom g$^{-1}$ a$^{-1}$, and $P_{10} = 0·10$ atom g$^{-1}$ a$^{-1}$ (Hesinger et al., 2002b). Production rates scaled for altitude and geographic latitude following Stone (2000) for neutrons and Granger et al. (2001a) for muons. Production rates and penetration depths corrected for geometric and depth shielding (Dunne et al., 1999) and sample thickness. Uncertainties in erosion rates and effective exposure ages are propagated from analytical uncertainty, plus systematic uncertainties in production rates, attenuation coefficients, and radioactive decay constants.

c 10Be erosion rates and effective ages are reported in text because 26Al concentrations require measurement of stable 27Al that introduces additional uncertainty.

d Effective timescales of erosion, given by $A_0^{-\frac{1}{2}}$.

Copyright © 2005 John Wiley & Sons, Ltd.
Can climate change alone account for the variation in incision rates revealed by the dated caves? The onset of incision could plausibly be related to sudden enlargement of North American ice sheets around 2.5 to 2.7 Ma (e.g. Balco et al., 2005; Haug et al., 1999; Raymo, 1994). High-pressure systems resulting from these ice sheets are thought to have pushed the jet stream southward over the southern Sierra Nevada for much of the past 2.7 Ma, as apparently occurred during the Last Glacial Maximum (e.g. Bartlein et al., 1998). Increased precipitation accompanying this shift would amplify river discharge, thereby increasing Sierra Nevada river incision rates. Rapid river incision would progress until river profiles equilibrated to the new climate regime, after which time incision rates would slow (Whipple et al., 1999). However, climate records suggest that the progressive shift to colder and more variable climates has increased toward the present (e.g. Zachos et al., 2001), so climatically moderated discharge cannot fully explain the reduction in rates by 1.5 Ma. Glaciation of the headwaters provides a possible explanation. As the size and duration of glacial occupation increased during the Quaternary, glacial erosion of the headwaters decreased the overall slope of the river profile, thereby reducing stream power (Whipple et al., 1999). Canyon widening and deepening must have also produced prodigious sediment loads that were subsequently delivered to the fluvial system. This sediment may have inhibited bedrock incision if aggradation was sufficient to armour riverbeds against incision processes (e.g. Sklar and Dietrich, 1998; Whipple et al., 1999). Sediment aggradation would likely peak during glacial maxima, at the very time when river discharges would have been greatest (Hancock and Anderson, 2002). The shift from predominantly 41 ka to 100 ka glacial cycles at c. 1 Ma (Clark et al., 1999; Raymo, 1994) may have led to even larger glaciers and more prolonged sediment armouring downstream, further reducing incision after 1.5 Ma.

A tectonic mechanism for driving the pulse of incision is simpler, particularly if rock uplift occurred as a discrete event. Differential rock uplift would incite rapid incision as rivers responded to both increased slopes and increased discharge resulting from enhanced orographic precipitation. The onset of rapid incision at 3 Ma is broadly consistent with independent estimates of Sierra tectonism from c. 3.5 to 5 Ma (Huber, 1981; Unruh, 1991; Wakabayashi and Sawyer, 2001; Jones et al., 2004). If rivers responded to differential rock uplift from 3.5 to 5 Ma as a propagating wave of incision, then the pulse of incision midway up river profiles at 3 Ma is expected (Stock et al., 2004). Furthermore, a tectonic mechanism requires no switch in process to reduce bedrock incision after c. 1.5 Ma. Rather, the reduction would result either from waning rock uplift rates (reflecting both the duration of the delamination event, and the crustal response time to accomplish full flexural–isostatic compensation), or from a transient erosional event that passed the cave sites between 3 and 1.5 Ma (Stock et al., 2004). Although complicated tectonic–climate feedbacks ensure that the forcing must include some climatic component, we argue that the pulse of incision indicated by the caves reflects primary tectonic forcing in the form of a discrete Late Pliocene rock uplift event.

Mechanisms of rock uplift

Late Cenozoic relief production is the basis for proposed flexural–isostatic rock uplift of the range crest (Small and Anderson, 1995). Is the magnitude of late Cenozoic erosion and relief production sufficient to explain all of the observed tilt? Whipple et al. (1999) argued that a change to a more erosive climate should actually reduce relief, limiting the amount of flexural–isostatic rock uplift. However, they considered the steady-state case with hillslopes tightly coupled to rivers. In contrast, the Sierra Nevada, with incising river canyons separated by slowly eroding interfluves, appears to be in the midst of a transient erosional event, and is therefore a non-steady-state landscape. Inner gorge incision in the main stems is only slowly progressing into the interfluves; much of the broad upland surfaces are still effectively ignorant of main stem incision and are eroding at very low rates.

Slow erosion of broad interfluves dictates that flexural–isostatic rock uplift occur mainly through the deepening and widening of canyons (Jones et al., 2004). Although Quaternary glacial erosion in the High Sierra appears to have significantly altered basin hypsometry, relief is only slightly greater in this region than in non-glaciated drainages (Brocklehurst and Whipple, 2002). In fact, the greatest canyon relief in the southern Sierra lies in the non-glaciated regions (e.g. the confluence of Middle and South Fork Kings Rivers). Dated caves show that river canyons deepened by only c. 400 m in the past 3 Ma, and the presence of narrow inner gorges indicates minimal canyon widening during this time. Taken together, the considerable palaeorelief and moderate amounts of Late Pliocene incision suggest that late Cenozoic erosion alone is insufficient to drive all of the rock uplift inferred from tilted markers at the western edge of the range (Small and Anderson, 1995). This diminishes, but does not eliminate, the climatic effect on uplift, further strengthening the case for tectonically driven uplift. Delamination of eclogitic lithosphere beneath the Sierra appears to be a viable tectonic mechanism for inciting differential rock uplift in the late Cenozoic (Ducea and Saleeby, 1996; Jones et al., 2004). Although our data do not speak directly to the delamination mechanism, a pulse of incision midway up river profiles beginning c. 3 Ma coincides with postulated delamination at 3.5 Ma (Manley et al., 2000; Farmer et al., 2002; Jones et al., 2004), and the magnitude of canyon deepening at the cave sites is commensurate with the amount of rock uplift expected there based on crestal uplift estimates (Huber, 1981; Unruh, 1991; Wakabayashi
and Sawyer, 2001). However, we stress that tectonic and climatic rock uplift mechanisms are not mutually exclusive. Whatever the initial driving mechanism, rock uplift accelerated river incision with respect to uplands, producing relief and inciting further rock uplift through flexural isostatic compensation.

Conclusions

Cosmogenic 26Al/10Be burial dating of cave sediment reveals that river incision in the Sierra Nevada was apparently slow (≤ 0.07 mm a$^{-1}$) from c. 4.7 to 3 Ma, accelerated to c. 0.3 mm a$^{-1}$ between 3 and 1.5 Ma, and decreased thereafter to c. 0.02 mm a$^{-1}$. This pulse of incision created narrow inner gorges and deepened canyons by up to 500 m. However, inner gorges represent roughly only 20 per cent of the existing local relief, suggesting that, in the southern Sierra at least, much of the modern topography predated late Cenozoic uplift. Convexities in tributary streams suggest that rapid river incision midway up river profiles commenced at c. 3 Ma.

Concentrations of 26Al and 10Be in granitic interfluve surfaces indicate that upland surfaces are eroding at slow rates of c. 0.01 mm a$^{-1}$, a factor of two to three lower than incision in the adjacent canyons over equivalent time periods, and more than an order of magnitude less than late Pliocene incision. Although local relief likely declined throughout much of the Cenozoic, the discrepancy between river incision rates and upland erosion rates over the past c. 3 Ma demonstrates an increase in local relief during this time. The erosional pulse in the trunk rivers is translating slowly up tributary streams, isolating uplands from the effects of uplift and preserving much of the early Cenozoic landscape. Low spatially averaged erosion rates have acted to preserve the broad topographic form of the Sierra Nevada for much of the Cenozoic.

Persistent high altitudes and local relief during the early Cenozoic need not preclude renewed uplift and erosion in the Pliocene. Rapid incision beginning c. 3 Ma coincides with estimates of renewed tectonism (Unruh, 1991; Wakabayashi and Sawyer, 2001; Jones et al., 2004), and may represent the erosional response to rock uplift associated with delamination of the batholithic root (Manley et al., 2000; Jones et al., 2004). Considerable pre-Pliocene relief, modest Pliocene inner gorge development, and low rates of upland erosion together suggest that the flexural isostatic response to late Cenozoic erosion is probably not sufficient to drive all of the rock uplift documented by tilted markers. We therefore favour a tectonic mechanism, such as root delamination, for inciting uplift, but do recognize the contribution of flexural–isostatic uplift to the total rock uplift.

Acknowledgements

We thank Joel Despain and Steve Bumgardner for field assistance, and Sequoia and Kings Canyon National Parks and Sequoia National Forest for permission to collect samples. Darryl Granger provided guidance with cosmogenic chemistry. We appreciate discussions with William Bull, Darryl Granger, Paul Koch, Christina Ravelo, John Wakabayashi, and the participants of the 2003 Pacific Cell Friends of the Pleistocene field trip. William Bull, Eric Kirby, and an anonymous reviewer provided helpful comments. This research was funded by grants from the National Science Foundation (EAR-0126253) and the Institute of Geophysics and Planetary Physics. Cosmogenic nuclide measurements were performed under the auspices of the US Department of Energy by the University of California, Lawrence Livermore National Laboratory, under contract W-7405-Eng-48.

References

Rates of erosion and topographic evolution of the Sierra Nevada, California

