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tectonism and Sierran plutonism (74-80 Ma) 
and the beginning of Laramide tectonism and 
plutonism (70-74 Ma) in Colorado were 
separated by no more than about 10 My and could 
have been simultaneous or partly overlapping. 
This swiftness of the shift in plutonism may argue 
against hypotheses which favour a flattening 
Benioff zone beneath North America at this time 
as an explanation for the eastward shift in tec- 
tonism and plutonism of latest-Cretaceous time 
(e.g. Coney 1978). 

We emphasize that Late Cretaceous Sierran 
plutonism occurred well to the W both of early 
extensional activity (discussed below) and of 
Cretaceous orogenesis in the thrust belt--in con- 
trast to areas farther N, where extensive Late 
Cretaceous plutonism took place adjacent to or 
within the loci of tectonism (Figs 2 & 3). 

Pre-mid-Miocene extensional tectonics 
and associated magmatism 

In contrast to the Eocene onset extensional 
tectonism and intermediate volcanism N of the 
Snake River Plain, Cenozoic extensional de- 
formation to the S did not begin until latest- 
Eocene or early Oligocene time. The early phase 
of extension, here defined as pre-mid-Miocene 
(before 18-15 Ma), occurred in the eastern 
Great Basin in a relatively narrow belt that was 
less than 100 km wide at the surface before 
extension (Fig. 3). The onset of extension at a 
particular latitude was synchronous with a 
generally southward-migrating belt of inter- 
mediate to silicic volcanism. At any given time, 
this magmatic belt trended E-W, at a high angle 
to the continental margin and was of the order 
of several hundred kilometres long--much 
greater than the width of the coeval extensional 
belt (see e.g. Snyder et al. 1976). 

The earliest documented extensional events in 
the Great Basin had begun by the early 
Oligocene, or perhaps as early as latest Eocene 
time. Solomon et al. (1979) and Smith & Ketner 
(1977) report both block faulting and folding 
of the late-Eocene-early-Oligocene tuffaceous 
clastics of the Elko Formation. An angular un- 
conformity above the deformed Elko, which 
contains tuff beds as young as 37-38 Ma (latest 
Eocene), is overlapped by volcanics that give 
ages as old as 35 Ma, suggesting a latest Eocene 
-earliest Oligocene age for the onset of exten- 
sion. 

To the S of the Elko area in the Northern 
Egan Range, Nevada, Gans (1982) and Gans & 
Miller (1983) have shown that 36-Ma old dykes 
cut normal faults with up to 1 km of displace- 
ment. Eruptive units in the same area, also dated 

as early Oligocene, were deposited prior to a 
major tilting of the Egan Range (Gans 1982) 
block indicating that extension and tilting took 
place over a brief period in the early Oligocene. 

In the northern Toiyabe Range of central 
Nevada large normal faults pre-date the depo- 
sition of 28.5 Ma-old volcanic rocks that were 
subsequently extended by a younger set of faults 
(Smith 1984). The entire system is blanketed by 
relatively undeformed volcanics of late 
Oligocene-early Miocene age. Smith (1984) 
estimates extension in this area to be as great as 
250%. 

In the Raft River Range area, Compton  et al. 
(1977) suggested that displacement on one of the 
larger detachments in the area occurred largely 
before the emplacement of 25 Ma-old stocks, 
since the metamorphic aureole around the 
plutons is only slightly offset by the fault. 
Jordan (1983) reported two younger-on-older 
faults in the same area that pre-date intrusion of 
the latest Eocene (38 Ma) Immigrant Pass 
pluton, although her interpretation that both 
faults were involved in an episode of recumbent 
folding may support a Mesozoic age for them. 

Based on stratigraphic analysis of pre- 
volcanic Tertiary sequences throughout 
E-central Nevada, Fouch (1979) suggested that 
the pre-Oligocene Cenozoic palaeogeography 
consisted of a number of restricted lakes that 
shifted their depositional loci through time. 
Although Fouch (1979) suggested that the basins 
formed by tectonic disturbance during their Late 
Cretaceous to early-Oligocene period of deposi- 
tion, the lack of thick sections of coarse detritus 
and angular unconformities within them in- 
dicates that major extension or shortening of the 
upper crust probably did not take place during 
pre-Oligocene, post-Cretaceous times. Here, as 
in the Pacific Northwest, the deposition of thin, 
conformable lacustrine sediments preceded 
volcanism and major extension, although for a 
much longer period of time in this case. These 
sequences, largely confined to the N of latitude 
38 ~ are typically only a few tens of metres thick 
but locally may be several hundred metres thick. 
Their loci of deposition are centred about the 
narrow pre-mid-Miocene belt of extension 
(Fig. 3). 

S of latitude 39~ the onset of the early 
extension appears to have occurred during the 
late Oligocene ( < 30 Ma), as did the main period 
Of intermediate to silicic volcanism. Early exten- 
sional tectonism included displacement on 
NE- and NW-trending faults that involve the 25 
Ma-old Shingle Pass Tuff, which, in the 
Belted Range are cut by 14-17 Ma intrusive 
rhyolites (Ekren et al. 1968). Volcanic rocks 
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younger than 17 Ma in the same region generally 
are cut only by a later set of N-trending faults. 
Immediately S of that region, in the northern 
Death Valley area, no normal faults of early- 
Miocene or Oligocene age are known, but the 
deposition of up to 1000 m of Oligocene and 
lower Miocene (?) Titus Canyon Formation in the 
Grapevine Mountains (Stock & Bode 1935; 
Reynolds 1969, 1976) may record the onset of 
extensional tectonism in this area. The basal 
Titus Canyon contains lenses of non-volcanic 
megabreccia, above which occur fossils of early- 
Oligocene age. The top of the formation is 
overlain by volcanic rocks between 22 and 20 Ma 
old. Whether the Titus Canyon represents a 
period of major extension, or is simply a 
younger analogy to the pre-volcanic sedimentary 
sequences farther N is not yet known. 

Igneous activity that accompanied early exten- 
sion in the northern Great Basin region 
resembles in several respects the Eocene 
magmatism of the Pacific Northwest. In par- 
ticular, silicic volcanic rocks constitute a high 
proportion of the volcanic suite, especially in the 
region around the belt of major early extension 
(Stewart 1980). The importance of crustal 
melting in the genesis of this suite is emphasized 
by the aluminous character of many of the 
associated granitic rocks (Best et al. 1974; Miller 
& Bradfish 1980). Studies of Nd and Sr isotopes 
of the granitic rocks of this region suggest their 
origin principally by the melting of lower-crustal 
granulitic source materials (Farmer & De Paolo 
1983). 

Mid-Miocene and younger extensional 
tectonics and associated magmatism 

Two major changes affected the Great Basin 
beginning between about 20 and 17 Ma, follow- 
ing the early phase of extension, the southward 
sweep of intermediate to silicic volcanism, and 
a brief lull in magmatism (McKee et al. 1970; 
Fig. 4). One is the predominantly basaltic to 
bimodal volcanism, which began in mid- 
Miocene time near the axis of the province in 
alreacly-extended terrane, and within a few 
million years had spread widely across it 
(Christiansen & McKee 1978). The other major 
change is the widening of the extensional ter- 
rane. The region from the frontalmost part of 
the thrust belt to the area of extensive Late 
Cretaceous Sierran plutonism became involved 
in the extension. The widening of the affected 
area and the onset of basaltic and bimodal 
volcanism thus define a larger scale example of 
the pattern seen in the Pacific Northwest S of 
the Lewis and Clark line. This widening of the 

extensional terrane involved neither the cessa- 
tion of extension in the core of the province nor 
the cessation of large-magnitude extensional tec- 
tonics (Figs 3 & 4). 

In mid- to late-Miocene times, the sequence of 
basin sedimentation, succeeded by intermediate 
to silicic volcanism, followed immediately by 
large-magnitude extension in turn followed by 
predominantly basaltic volcanism occurs in a 
corridor from the Yerington area of the western 
Great Basin (Proffett 1977; Hardyman et al. 
1984; Gilbert & Reynolds 1973) down to the 
Death Valley region in the southern Great Basin 
(e.g. Wright et al. 1981, 1984; Burchfiel et al. 
1983; Stewart 1983; Hodges et al. 1984, 1986; 
Ekren et al. 1968). N of the Yerington area, 
large-magnitude extension is perhaps indicated 
by the steep dips of mid-Miocene volcanics in 
the Sonoma Range near Winnemucca, (see e.g. 
Gilluly 1967), suggesting that this part of the 
Great Basin may have been extended a great deal 
more than has been generally suspected (see also 
Zoback et aL 1981). N of the latitude of Win- 
nemucca, the High Lava Plains of southwestern 
Oregon are blanketed by mid-Miocene and 
younger volcanics that have been broken by nor- 
mal and strike-slip faults (Donath 1962). 
Lawrence (1976) analysed WNW-striking, 
regionally persistent shear zones across which he 
inferred differential extension had occurred, 
with increasing amounts of extension to the S. 

It is uncertain how much extension has 
occurred in the High Lava Plains (Lawrence 
1976). Firstly, because most of the exposed 
rocks are less than 16-Ma old, it is unknown how 
much pre-mid-Miocene extension may have 
occurred. Secondly, although stratal tilts within 
the extended volcanic terrane are typically not 
large, such an observation is insufficient to rule 
out large-magnitude extension there. For example, 
strata in the hanging wall of the Sevier Desert 
detachment (McDonald 1976; Allmendinger 
et al. 1983) as a rule dip at less than about 20 ~ 
yet this structure has accommodated several tens 
of kilometres of crustal extension (Wernicke 
1981). 

In the Death Valley area, as in the Oregon 
High Lava Plains, late Miocene to Recent exten- 
sion terminates to the S against a strike-slip 
boundary, the Garlock fault (Hamilton & Myers 
1966; Davis & Burchfiel 1973; Burchfiel et al. 
1983). It is noteworthy that the Death Valley 
area, which represents one of the youngest large- 
magnitude extensional terranes, experienced 
the same cycle, noted elsewhere in the Great 
Basin and Pacific Northwest regions, of local 
sedimentation, intermediate magmatism, large- 
magnitude extension and finally basaltic 
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or bimodal volcanism, but entirely within mid- 
Miocene to Quaternary times (Wright & Troxel 
1973; Wright et al. 1984). Similarly, the 
Eldorado Mountains-Black Mountains exten- 
sional terrain (Anderson 1971; Anderson et al. 
1972) developed between about 15 and 11 Ma 
amid an intermediate-volcanic field. These ex- 
amples emphasize that the sequence we propose 
as 'typical' for the development of an extended 
terrane is independent of its time of develop- 
ment. 

Extension within the narrow, pre-mid- 
Miocene belt continued during mid-Miocene 
and younger time, and locally may be of large 
magnitude, not having waned significantly in the 
last 10-15 Ma. For example, Snoke & Howard 
(1984) report large stratal rotations of 13.5-My 
old rhyolitic flows in the Elko area, the locus of 
some of the earliest extension in the Great Basin. 
Similarly, Compton (1983) mapped a large-scale 
detachment complex in the Raft River Range 
area that involves 11.5-My old volcanic rocks. 
The opening of the adjacent Raft River basin 
along a shallowly inclined detachment (Cov- 
ington 1983) occurred in the last 15 My, and may 
still be active. Covington's (1983) reconstruc- 
tions suggest about 30 km of transport of upper- 
plate rocks. Farther S in the pre-mid-Miocene 
belt, Bartley et al. (1984) have shown that large- 
magnitude extension was responsible for the 
development of the Miocene and Pliocene Horse 
Camp basin (Moores et al. 1968) in the Grant 
Range area, E-central Nevada. 

E of the early belt, post-15 Ma extension, 
some of large magnitude, disrupted the frontal 
part of the thrust belt, from just S of the Yellow- 
stone Plateau volcanic field to southern Nevada 
(Fig. 4). Detachments and rotated normal-fault 
blocks typically are downthrown to the W, and 
some have been shown to have reactivated older 
Sevier thrust faults (Royse et al. 1975). The 
magnitude of extension accommodated on these 
faults is quite varied, ranging from 7-8 km of 
supracrustal extension across the entire Idaho- 
Wyoming thrust belt (Royse 1983) to many tens 
of kilometres of extension in the Great Salt 
Lake, Sevier Desert, and southern Nevada sec- 
tors of the orogen. Davis & Burchfiel (1973), 
Guth (1981) and Wernicke et al. (1982, 1984) 
have shown that much of the 140-km translation 
of crustal blocks on large strike-slip faults in 
southern Nevada is absorbed by crustal exten- 
sion between blocks. Based on seismic reflection 
profiling in the Sevier Desert area, AUmendinger 
et al. (1983) and Anderson et al. (1983) have sug- 
gested offsets of 30-60 km on the Sevier Desert 
detachment. Given that most of the rotated 
basin-fill there is of Miocene-Pliocene age and 

the fact that abundant Quaternary faulting 
occurs in the hanging wall of the detachment 
without offsetting it, the bulk of displacement 
on the detachment appears to be post-mid- 
Miocene, and it may still be active (Wernicke 
1981; Anderson et al. 1983; Allmendinger et al. 
1983; Smith & Bruhn 1984). 

While most of the down-to-the-W extension 
within the thrust belt is post-mid-Miocene, there 
may be exceptions. Both Allmendinger et aL 
(1983) and Hopkins & Bruhn (1983) have sug- 
gested an Oligocene age of initiation for extension 
in the Sevier Desert and northern Wasatch 
Mountains areas, respectively. However, 
evidence for Oligocene extension of a magnitude 
comparable to that during Miocene and 
Pliocene times is lacking. Widespread Oligocene 
and lower-Miocene sheets of rhyolitic ash-flow 
tuff spanned areas much larger than the present 
ranges and basins without significant deflections 
caused by buried topography. 

Las Vegas amagmatic corridor and the 
Mojave and Sonoran Desert regions 

Considering the Great Basin as a whole, it is a 
reasonable generalization that one is never very 
far from a Tertiary volcanic-plutonic centre. 
Perhaps one of the most striking exceptions to 
this is a region W and N of Las Vegas, which 
experienced large-magnitude extension but 
shows no sign of igneous activity at any time 
during the Phanerozoic (Longwell et al. 1965; 
Anderson et al. 1972; Guth 1981; Wernicke 
et al. 1984). This 'amagmatic corridor' (Fig. 2; 
Anderson 1981) is the same area, as mentioned 
above, that was shortened mainly during the 
Jurassic (e.g. Carr 1980) with the latest phases 
occurring at about 90 Ma (Burchfiel & Davis 
1971, 1981)--at least 20 My before the end of 
shortening in central Utah and about 40 My 
before thrusting ended in the Idaho-Wyoming 
sector of the thrust belt (Fig. 2). Despite the fact 
that this is one of the first areas to have thickened 
the craton, major extension did not begin until 
about 15 Ma--the latest time of initiation at any 
latitude along the belt. The southward cut-off in 
igneous activity is extremely abrupt (e.g. Eaton 
1982), and some of the most extensive Tertiary 
intermediate and silicic volcanism in the Great 
Basin occurred just to the N of it, where volcanic 
accumulations are commonly 500-1000 m thick 
(Stewart 1980). Some of these large fields occur 
away from areas of major extensional tectonism. 
For example, the Marysvale field in southwestern 
Utah (Steven et al. 1984) contains a section up to 3 
km thick near volcanic centres on the western 
edge of the Colorado Plateau. Other fields, 
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however, such as the southern Nevada volcanic 
field (Christiansen et al. 1977), are in areas of 
major extension. 

S of the 'amagmatic corridor', in the Mojave 
and Sonoran Desert regions, extension was of 
large magnitude and followed the pattern of 
early sedimentation, intermediate volcanism, 
extension, and then basaltic or bimodal mag- 
matism. Like the Great Basin, this region experi- 
enced extension and intermediate magmatism 
between early-Oligocene and mid-Miocene times 
( = 35-15 Ma). The principal distinction between 
this part of the extending Cordillera and areas to 
the N is that extension waned immediately fol- 
lowing the mid-Miocene onset of basaltic 
magmatism, while extension continued farther 
N. Other key distinctions include its position 
within; (i) pre-Mesozoic cratonic North America; 
(ii) a long-lived Mesozoic magmatic arc; and (iii) a 
zone of latest-Cretaceous and early-Tertiary 
compressional orogenesis and magmatism (Haxel 
et al. 1984; see also Coney & Harms 1984). The 
more detailed synthesis by Glazner & Bartley 
(1984) suggests that the most intense magmatism 
and extension in the region migrated generally 
northward from the Tucson area during the mid- 
Oligocene to the Las Vegas area by the mid- 
Miocene--an apparent "mirror-image" of events 
farther N, with an axis about the 'amagmatic cor- 
ridor' (Anderson 1981). 

Neogene compression in western areas 

As in the Pacific Northwest, the continental 
margin W of the extended Great Basin region 
was characterized by either tectonic quiescence 
or crustal shortening during extensional defor- 
mation farther E. Notable events include post- 
latest-Eocene folding and accretion of 
Franciscan rocks in the northern California 
Coast Ranges (e.g. Blake & Jones 1981); move- 
ment on the Coast Range thrust during the 
Tertiary (Page 1981); and Neogene transpression 
of the southern Coast Ranges next to the San 
Andreas Fault (e.g. Page 1981; Figs 3 & 4). The 
presence of mid-Miocene fossils in deep-sea 
deposits of the Coastal Belt Franciscan 
(McLaughlin et al. 1982) suggests shortening 
after that time along the margin. While Neogene 
transtensional basins appea~ to have opened 
locally adjacent to the San Andreas (e.g. 
Crowell 1974; Hall 1981), the dominant tectonic 
regime along the margin appears to have been 
compressiona! or transpressional during much 
of post-Eocene time. There is little evidence of 
extensional events affecting the entire margin 
during the Cenozoic. 

The history of the compressional or transpres- 
sional shortening of the edge of North America 
during much of the Cenozoic provides an 
important constraint for models of coeval exten- 
sional tectonics occurring further inland (Sonder 
et  aL this volume). 

Summary and conclusions 

In the Pacific Northwest, extension began in the 
middle Eocene (~  53 Ma), possibly overlapping 
in time with the latest phases of foreland 
thrusting to the E. Its onset was more or less 
synchronous with intermediate to silicic 
magmatism. S of the Lewis and Clark line, 
extension continued in a broader belt after the 
mid-Miocene, simultaneously with local basaltic 
or bimodal volcanism. 

In the Great Basin region, major extension 
did not begin until latest Eocene or early- 
Oligocene time (~  38 Ma) and was initially con- 
centrated in a narrow zone; this extension was 
also accompanied by intermediate to silicic 
magmatism. Following the onset of pre- 
dominantly basaltic or bimodal volcanism in 
mid-Miocene time, extension developed over a 
much broader area than in pre-mid-Miocene time. 
Magmatism has tended to concentrate outward 
with time since the mid-Miocene, and since the 
beginning of the Quaternary has occurred mainly 
near the margins of the region. Post-mid- 
Miocene extensional strain is not of lesser 
magnitude than in the early belt in the Great 
Basin, and extension seems to be as active today 
in some parts of the Great Basin as it has ever 
been. 

In the southern Nevada 'amagmatic corridor', 
extension did not begin until the mid-Miocene 
(~  15 Ma), the latest onset time of any latitude in 
the Cordillera. This region also has the earliest 
time of cessation of Mesozoic thrust faulting. 

We are impressed by what appears to be a 
consistent relationship between the timing of 
onset of extension and the intensity of the 
Cretaceous-early-Tertiary plutonic history of 
the various extended regions. Where extension 
began earliest N of the Snake River Plain at 
about 55-49 Ma, it took place astride a number 
of Late Cretaceous-early-Tertiary batholiths. 
Farther S in the Great Basin region, where only 
minor Late Cretaceous plutonism occurred 
within the overthickened crust, extension began 
38-20 Ma. In the 'amagmatic corridor', where 
there are no Phanerozoic plutons, extension 
began at about 15 Ma, with the longest hiatus 
between compression and extension, an interval 
of at least 65 Ma. S of the 'amagmatic corridor,' 
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where Late Cretaceous magmatism is prevalent 
(though apparently less extensive than in the 
Pacific Northwest), extension began at about 
the same time as in the northern Great Basin 
(e.g. Glazner & Bartley 1984). 

We conclude that the locus of extension is 
controlled principally by crustal thickness, while 
its timing is governed by the thermal state of the 
lithosphere at the time of thickening. As we 
show in a companion paper (Sonder et al. this 
volume), the observations shown in Table 1 are 
consistent with calculations based on a simple 
thermal-mechanical model in which extension of 
the lithosphere results from gravitational 
spreading of  a previously thickened crust. 
Because the onset of extension is, as a rule, ac- 
companied by calc-alkaline magmatism, a lower 
crust at or near its minimum-melting tem- 
perature (---650-750 ~ is apparently a 
requirement for it to begin. However, since 
magmatism of this type also occurs well away 
from extended regions, it does not appear to be 
the driving mechanism of extension, as has been 
proposed in some models. 

We also emphasize that the continental 
margin W of the extensional terrane was the 
locus of crustal shortening during the Cenozoic, 
coeval in several places with major phases of 
extension to the E. Such a kinematic boundary 
condition is inconsistent with hypotheses that 
relate inland extension to extensional deviatoric 
stresses along the adjacent margin, induced by 
e.g. changes in plate motion. 

Recent speculation that a decrease in 
Farallon-Pacific convergence rates is the cause 
of extension (Coney 1978; Engebretson et aL 
1984; Coney & Harms 1984) is not supported by 
the observation in active systems that tectonic 
regimes in overriding plates show no consistent 
relationship to convergence rates (Molnar & 
Atwater 1978). For example, the Tonga- 
Kermadec and Peru-Chile systems both have 
convergence rates of about 10 cm yr-1, yet the 
tectonics of the overriding plates are strongly 
extensional and compressional, respectively. 

Engebretson et al. (1984) suggested that the 
progressive decrease in age of the subducting 
Farallon Plate may have brought about the 

slowing of convergence because of a change 
from negative to positive buoyancy of the 
downgoing slab. By contrast, Molnar & Atwater 
(1978) demonstrated a strong correlation between 
extensional tectonics and old subducting 
lithosphere, and between compressional tec- 
tonics and young subducting lithosphere. Thus, 
the reconstruction of Engebretson et aL (1984) 
would predict behind-the-arc extensional tec- 
tonics during the Cretaceous and early Tertiary, 
changing to compressional later in the Tertiary. 

We also view the timing of the calculated major 
transition in plate motions at 40 Ma 
(Coney 1978) as being too young to explain the 
earliest-middle-Eocene (55-53 Ma) transition in 
tectonic style N of the Snake River Plain, where its 
timing is most tightly bracketed. While Coney 
(1972) has argued for a fundamental transition 
in Cordilleran tectonics at 40 Ma, this figure 
represents only the upper age limit for Laramide 
tectonism throughout much of the Cordillera. 
We could not find any examples of post-early- 
middle-Eocene ( - 52-50 Ma) strata deformed by 
Laramide compression. Based on this evidence, 
we feel a more likely time for a synchronous, 
Cordillera-wide transition, i f  any, is 55-50 Ma, 
centred in time on the peak in convergence rates 
calculated by Engebretson et al. (1984). 

While we agree with these authors that some 
relaxation of  horizontal boundary stresses is 
necessary for extension to begin, it is not clear 
that the calculated plate motions would predict 
such a relaxation. It would of course be incor- 
rect to rule out plate-interaction forces as a 
major factor in Cenozoic Cordilleran tectonics. 
For example, reorientation of  the horizontal 
stress axes during the past 17 My is likely best 
explained by variations in plate-interaction 
forces (Zoback & Thompson 1978; Zoback et al. 
1981). 
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