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ABSTRACT

We study the interplay of various factors causing vertical grain-size changes in alluvial basins
using a simple coupled model for sediment transport and downstream partitioning of grain sizes.
The sediment-transport model is based on the linear diffusion equation ; by deriving this from
first principles we show that the main controls on the diffusivity are water discharge and stream
type (braided or single-thread). The grain-size partitioning model is based on the assumption
that the deposit is dominated by gravel until all gravel in transport has been exhausted, at which

point deposition of the finer fractions begins.

We then examine the response of an alluvial basin to sinusoidal variation in each of four basic
governing variables: input sediment flux, subsidence rate, supplied gravel fraction, and
diffusivity (controlled mainly by water flux). We find that, except in the case of variable gravel
fraction, the form of the basin response depends strongly on the time-scale over which the
variation occurs. There is a natural time-scale for any basin, which we call the ‘equilibrium

time’, defined as the square of basin length divided by the diffusivity. We define ‘slow’ variations
in imposed independent variables as those whose period is long compared with the equilibrium
time. We find that slow variation in subsidence produces smoothly cyclic gravel-front migration
with progradation during times of low sedimentation rate, while slow variation in sediment flux
produces gravel progradation during times of high sedimentation rate. Slow variation in
diffusivity produces no effect. Conversely, we define ‘rapid’ variations as those whose period is

short compared with the equilibrium time. Our model results suggest that basins respond
strongly to rapid variation in either sediment flux or diffusivity ; in both cases, deep proximal

unconformities are associated with abrupt gravel progradation. This progradation occurs during
times of either low sediment flux or high diffusivity. On the other hand, basin response to
variation in subsidence rate gradually diminishes as the time scale becomes short relative to the
equilibrium time. Each of the four variables we have considered — input sediment flux,
subsidence, gravel fraction, and diffusivity — is associated with a characteristic response pattern.
In addition, the time scale of imposed variations relative to the equilibrium time acts in its own

&4

right as a fundamental control on the form of the basin response.

1 INTRODUCTION

Changes in grain-size are among the most fundamental
and readily observed features of sedimentary sequences.
Grain-size is the primary basis on which lithostratigraphic
units are defined, and vertical changes in grain-size have
long been thought to contain important information about
the history of basin sedimentation. The cause of moderate-
to-large-scale vertical grain-size variation can be divided
into autocyclic mechanisms, which originate within the
sedimentary system, and aflocyclic mechanisms, which are

externally forced. Broadly speaking, autocyclic effects can
be expected to dominate at small 0 moderate scales and
allocyclic effects at large scales, although there is a wide
range of overlap in scale.

In this paper we consider allocyclic mechanisms that
influence the overall grain-size pattern of alluvial basin
fills. One can identify three schools of thought on the origin
of allocyclic grain-size variation. In the most traditional
school, an increase in grain-size is thought to result from
an increase in flux of coarse sediment into the basin during
periods of heightened tectonic activity (Rust & Koster
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1984). This is often termed ‘syntectonic’ progradation. A
diametrically opposed interpretation was suggested by
Blair & Bilodeau (1988) and Heller ez al. (1988), who
argued that periods of tectonic quiescence might be
expected to reduce basin subsidence rates and thus allow
progradation of coarse units farther into the basin. Thus,
to the extent that subsidence is linked to tectonism, upward
coarsening would be associated with reduced tectonic
activity. Gravel progradation in this scenario might be
termed ‘antitectonic’. Paola (1988, 1990) suggested that
cither scenario is possible, with the critical control being
the variation in sediment flux relative to variation in the
rate and distribution of subsidence. The third school
(Lindsay, Smith & Haynes 1990 ; Smith & Battuello 1990)
proposes that progradation of coarse material, and thus
upward coarsening, can occur because of climatically
driven changes in either water or sediment supply,
independent of tectonism. Clearly, these three controls —
gravel flux, subsidence, and climate — are not mutually
exclusive, and any one might dominate in a particular
progradation event. The real issue is how to distinguish
among them.

We believe that application of well-founded physical
models of basin processes can help resolve the roles of these
various influences on grain-size patterns in basins. In this
paper we develop a simple model of basin filling and grain-
size partitioning by rivers, and then look systematically at
the effects of varying each of the governing parameters on
different time-scales. The model that we develop is first-
order and thus does not attempt to replicate all of the
important features of real rocks. Despite its simplicity,
however, it produccs a surprisingly rich set of responses to
simple allocyclic forcing. We hope that these idealized
response patterns will be helpful in distinguishing among
the possible causes of grain-size changes in real rocks. In
our companion paper (Heller & Paola 1992; hereafter
Part 2) we give examples of how the model can be applied
to the interpretation of the rock record.

"I'he basic model is derived directly from the governing
equations of flow and sediment transport in rivers.
Developing the model from first principles helps clarify
what aspects of the fluvial system are and are not embodied
in it, and what the model parameters mean physically. This
approach also offers the eventual possibility of constraining
some of the parameters independently and thus developing
truly predictive analytical models in basin analysis.

2 BASIN-FILLING MODEL

2.1 General

Predictive basin-filling models have received increasing
emphasis recently (Cross & Harbaugh 1990). A mathemat-
ical model provides a framework within which the effects
of varying any single factor can be readily determined, and
the interaction among variables studied systematically.
Such models are also helpful in identifying critical field
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relations and in guiding the design of field studies.
Ultimately, quantitative models are also far more restric-
tive, and thus far easier to test and refine, than qualitative
ones. We note that all of the parameters in our model can,
in principle, be estimated independently, offering the
possibility that models such as this one may eventually be
useful as genuine predictive tools.

The model we develop here begins with simplified forms
of the equations of flow and sediment transport in two
dimensions. We show that these can be reduced to the
linear diffusion equation with two limiting values for the
diffusivity, vne that we identify with braided strecams and
the other with single-thread or meandering streams. The
diffusion metaphor has long been used in modelling river
systems (Adachi & Nakatoh 1969 ; Garde, Ranga Raju &
Mehta 1981 ; Jain 1981 ; Soni 1981; Gill 1983; Jaramillo
& Jain 1984; Ribberink & van der Sande 1985; Begin
1987; Zhang & Kahawita 1987) and has recently been
applied to deltas (Kenyon & ‘L'urcotte 1985) and foreland
basins (Flemings & Jordan 1989; Jordan & Flemings
1990). Our explicit derivation of the diffusion equation as
it applics to basin filling clarifies some of the assumptions
implicit in diffusion-based models and allows us to
determine the structure of the diffusion coefficient in terms
of more fundamental variables. It turns out that the main
controls on the diffusion coefficient are the total amount of
surface water available in the system, determined by the
precipitation rate and the catchment area, and the river
type (braided versus single-thread). Overall, four basic
independent variables govern the model system : subsidence
(rate and distribution), sediment flux, water flux, and grain-
size distribution of the sediment supply.

We then couple the diffusional solutions to a simple
sediment-partitioning technique for calculating down-
stream grain-size changes. This technique is based on the
observation that in aggrading river systems the primary
cause of downstream fining appears to be preferential
deposition of the coarsest clasts (Shaw & Kellerhals 1982).
This implics that the downstream distribution of grain-
size is controlled essentially by mass-balance rather than
clast-attrition effects. We exploit this mass-balance control
by partitioning the input grain sizes in the deposit according
to their proportion in the supply — for instance, if the
sediment supply contains 109, gravel and there is no
erosion within the basin, gravel will occupy the most
proximal 109, of the deposit volume. However, if there is '
erosion of previously deposited gravel, then this gravel is
added to the supply and redistributed farther out into the -
basin.

As mentioned earlier, this model is not intended to
predict the pattern of deposition in a specific basin. Broadly,
one can think of the pattern of fill in a given basin as the
result of the interplay between specific local effects, such
as the geometry of the basin and the distribution of
sediment sources, and general patterns of sediment
distribution. We hope that our model will help clarify these
general patterns, but the local controls can be resolved only
through detailed field work.
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Fig. 1 Definition sketch.

2.2 Modelling sediment distribution

Consider a two-dimensional slice of a sedimentary basin
such as shown in Fig. 1. By ‘two-dimensional’ we mean
that the subsidence rate, sediment flux, and water flux do
not vary normal to the direction of transport. Conservation
of water mass in a single channel can be expressed as

Q= b, (1)

where Q is water discharge [A®~!], b is channel width
[A], £ is channel depth [A], and « is mean velocity [A® ~'].
Here and in all subsequent equations the basic units of
cach variable are given in square Lrackets: [M=iuass,
A=length, and ®=time]. The symbol [0] means the
variable is non-dimensional. It is more useful to normalize
equation (1) to unit basin width, giving

9= ﬁh”a )

where ¢ is the normalized water discharge [A*©~'] and B
the normalized total channel width | 0] ; both are normalized
per unit width of basin.

For sufficiently long space and time-scales, conservation
of momentum can be written as

T= —gha’ (3)

where 7 is the kinematic shear stress (force per unit area
per unit fluid density) [A*@ ™7, g is gravitational acceler-
- ation [A@ %), 5 is elevation of the sediment surface relative
to 2 fixed (non-subsiding) horizontal datum [A], and x is
downstream distance [A]. The limiting space and time-
scales for which (3) is valid are discussed further in
section 2.7.

Conservation of mass for the sediment can be expressed
as

(1Y oBq)
"<CO> o @

where r is the rate of deposition [A® '], ¢ is time [®], C,
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is the volume concentration of sediment in the bed [0], and
¢, is the volume rate of sediment transport per unit width
of channel [A%©~1].

There is no explicit relation available for momentum
conservation for sediment being transported by a moving
fluid. The best one can do is to use a well founded semi-
empirical relation (see the review in Brownlie 1981). The
simple relation of Meyer-Peter & Miiller (1948) can be
written as

_ 8(z—1)"
gs—1) "’
where 7, is the critical shear stress needed to set the
sediment in motion, which for present purposes may be
taken as a function of only the local mean sediment grain-
size, and s is the sediment specific gravity.
Equations (4) and (5) combine to yield
' -8 6(ﬂ(t - T[)J(Z)
r= . (6)
Cog(s—1) Ox
It is common practice to relate the shear stress to the
velocity by

(5)

5

T = u?, o)

where ¢, is a dimensionless drag coefficient, typically of
order 0.01. We will assume ¢, to be constant.

At this point, two additional equations are required to
solve the system represented by equations (2)-(7). A
natural choice for the two equations would be an
independent relationship between channel width and the
other variables and an equation for mean grain-size as a
function of x, possibly in terms of the other variables in the
system, which would determine 7. However, there is no
general relationship available for stream width. Fortunately,
the need for such a relationship can also be met by
postulating a relationship between the actual shear stress t
and the critical shear stress 7. For gravel-bed rivers with
non-cohesive banks, a situation that in nature is usually
associated with braiding, Parker (1978) has shown that the
stress at the channel centre cannot exceed the critical value
by more than a fixed, small fraction without causing bank
erosion. Thus

t=(1+ &1, (8)

where ¢ is a constant. The theoretical value of ¢ is about
0.2 ; measured values are typically about 0.4 (Parker, 1978).
We will refer to equation (8) loosely as the ‘braided’ case.

On the other hand, strcams with strong cohcsive and/or
vegetated banks can sustain shear-stress values that are
much higher than critical, especially if they have sand beds.
In this case it is reasonable to assume 7> 7, such that

T—T==1 ®

These conditions are likely to be met in deep, single-thread
channels with well-developed flood plains. In most natural
cases, such streams would be meandering. We will refer to
equation (9) loosely as the ‘meandering’ case.
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Introducing (8) or (9) into (6) gives
B -84 \ a(pr*
"T\Ca-1) o

where A is a non-dimensional constant; 4=1 for the
meandering case and A= (¢/(1 +¢))*” for the braided case.

(10)

Time averaging

Since we are interested in modelling the dynamics of
sedimentary basins over geological time scales, the instan-
taneous balance equations developed so far must be time-
averaged. We assume the existence of an averaging time
that is long compared with individual channel-forming
events but short compared with time-scales of geological
interest, and denote averages over this time-scale by angle
brackets ¢ >. The rate of deposition then becomes

a{n>
= (r,
F <)

where ¢ is the subsidence rate [A@~'], taken as positive
for subsideuce and negative for uplift. Sincc all the
relationships developed so far involve instantaneous varia-
bles, we must find a way of relating instantaneous to time-
averaged variables. The simplest possible relationship is
obtained by assuming that the flow can be characterized by
a set of representative ‘channel-forming’ conditions that
occur intermittently. This intermittency is embodied in a
dimensionless time fraction /, so that

(g9 =Ig;and {g> =1y

whereas variables that are non-zero only during a flood are
unchanged by the averaging:

Cuy = us (B) = B; <hy = h;etc. (12b)
This is clearly an oversimplication, but the price of added
realism (for instance, treating the flow probabilistically and
averaging over many realizations to yield the long-term
behaviour) would be increased computational complexity,
added parameters that are difficult to constrain, and the
blurring of first-order effects that should be clearly
understood before more complex models are developed.

An additional problem that arises with a full probabilistic
treatment of flow events is that non-linear terms in the
governing equations produce additional terms when
averaged. For example, fg,, which appears in equation (4),
would give:

(Ba =< <gy + <Ba>, 13)

where primes denote deviations away from the average, ..
B =B—{B). The simplified model of intermittent but
identical channel-forming events that we have adopted in
(12) automatically makes the fluctuation term {f'¢,"> zero.
More realistically, if the width is positively correlated with
discharge, the fluctuation term will be positive, and its
magnitude will depend both on the magnitude of width
and discharge fluctuations and on the correlation coefficient
between them.

o+ (11)

(12a)
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Each of equations (2)-(10) has a time-averaged version
determined using (11) and (12). Rather than repeating
them all, here are (for example) the time-averaged versions
of (2) and (4), respectively:

(g = IPhu; (14)
a(my _ ( =1\ 0(B<{g)
T _<E> Ar 15

Combining equations (2)—(12), with time averaging we
have

L2 (m)

ot ox\’ ox (162)

which is the standard linear diffusion equation with the
subsidence rate ¢ appearing as a sink term and the
diffusivity v [A*T '] given by

RS IORNG,

Ce—D) (16b) -

Notc that v has two possiblc valucs depending on the value
of A; for the case A= 1, our derivation is similar to that of
Begin et al. (1981). For a reasonable ¢ of 0.4 the braided-
stream value of v is lower than the meandering value by a
factor of about 0.15.

The drag coeflicient (¢), the sediment concentration
(Cy), and the sediment specific gravity (s) can be constrained
by data from modern river systems and/or preserved
sediments. In any case these parameters are not expected
to vary much relative to {4, the long-term average rate of
water supply. It is (4> and 4 that primarily determine the
order of magnitude of v. In other words, wet basins
transport sediment more effectively than do dry basins,
and deep single-thread streams transport sediment more
effectively than shallow braided streams. Unfortunately,
although stream type can be readily constrained using
classical techniques of facies analysis, {¢) is not easy to
cstimate from the sedimentary record. We will discuss
methods of estimating (4) at the end of the paper.

In general, one would expect {(¢> to be an increasing
function of x because of tributary input. In this paper, we
will ignore this effect and treat vas a constant. Qualitatively,
one important effect of including variable discharge would
be to make the computed surface profiles more concave
than they appear in this paper.

It is worth noting that for a stream that remains entirely
within either the braided or meandering regimes as defined
above, equation (16) does not depend on grain-size. This is
unlike equation (6), which depends on grain-size via 7. As
will be discussed below, the primary control on grain-size
variation is the distribution of rate of deposition; the fact
that equation (16) is independent of grain-size means that
deposition and grain-size have been decoupled, so the
distribution of deposition can be found first and the grain-
size variation computed from it directly. In reality v must
depend to some extent on grain-size because the channel
morphology (braided versus meandering) must depend in



part on grain-size. The simplest next step would be to
introduce a model for the braided-to-meandering tran-
sition, which would depend in some way on grain-size. We
have not done this here mainly because it would make the
computations considerably more complex without chang-
ing the results fundamentally.

Being of second order, equation (16) requires specifica-
tion of two boundary conditions. The first involves the
sediment flux at the upstream end of the system (Fig. 1).
In previous analyses, the sediment flux has been set by
coupling the depositional system of some sediment-source
model, such as a diffusively eroding thrust front (Jordan &
Flemings 1990), which results in a coupling between
sediment flux and subsidence. We prefer to retain the
sediment flux as an independent variable for two main
reasons: (1) we are interested in exploring the general
nature of basin response to variation in input parameters;
uncoupling the flux from a specific input model such as a
diffusively eroding thrust widens the range of possibilities
we can study; and (2) sediment input to a basin may not
be derived from directly adjoining uplifts (Dickinson 1988 ;
Heller et al. 1992), in which case there seems to be no
reason to couple sediment flux and subsidence. In general,
the influence of each independent variable can be
understood most clearly if the inputs are varied separately.
It is straightforward, however, to covary any subset of the
input variables in order to simulate a specific situation.

The flux is used to set the surface slope at the upstream
end (x=0):

a _ =

=0
p» ) (17a)

where <{¢,»¢ is the input sediment flux. The second
boundary condition, applied at the downstream end of the
deposit (x=L,), is a bit trickier; it depends on what
assumption is made about the erodibility of the basement
and on whether or not the basin is overfilled (L,> L). Here
we assume that the basement is much less erodible than
the basin fill. With this assumption we consider first the
underfilled case L, < L, for which the downstream boundary
condition depends on the geometry of the distal end of the
basin.

If the deposit is not bounded by a vertical wall, the
downstream boundary condition has two independent
parts: both the sediment flux and the sediment thickness
must independently be zero (Fig. 1). 'The first condition says
that all sediment is accounted for within the computational

- grid; the second, that the deposit cannot end in a cliff or

fall below the basement. Actually, the flux cannot quite
vanish at x = L, since there is still water flow there and we
have assumed that 7> 1, in deriving (16). The assumption
of zero flux is a convenient approximation to a small but
unknown flux at the downstream end. Physically, this flux
would represent sediment passed into a trunk stream
flowing normal to the plane of the calculations. None of
the results presented herein are changed if 2 nonzero flux
is applied at x=L,, as long as this flux is small compared
with the input flux.
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Thus

0

%=Oand @y =Gatx=1L, (17b)
where G is the elevation of the basement [A]. The presence
of three boundary conditions in a second-order system
allows determination of one additional variable, in this case
the length of the deposit L.

If the basin ends with a vertical wall, then the deposit
thickness at the downstream end is not constrained to be
zero as long as the deposit remains within the confines of
the basin. In this case the third boundary condition is
replaced by the requirement that the deposit length L, be
equal to the basin length L.

If the basin is just filled or overfilled (L,> L), water and
sediment continue to flow indefinitely in the same direction
and the deposit does not have a well-defined length. In this
case, the appropriate boundary condition is

> =Gasx— 0. (17¢)

2.3 Modelling grain-size variation

It has long been thought that the primary mechanism of
downstream fining in rivers is abrasion of coarse clasts
(Krumbein 1941; Plumley 1948; Kuenen 1956). This
view is partially substantiated by observations of systematic
downstream change in clast composition in natural rivers,
in which less durable clasts are progressively depleted
(Abbott & Peterson 1978; Shaw & Kellerhals 1982).
However, several workers (Shaw & Kellerhals 1982;
Brierley & Hickin 1985) have noted that (1) observed rates
of fining in natural rivers are often orders of magnitude
higher than appears possible for abrasion alone, based on
tumbling-barrel experiments; and (2) the rate of fining
increases with the rate of deposition, with the highest fining
rates obscrved on rapidly aggrading alluvial fans. The first
observation can be explained to some extent by invoking
abrasion processes difficult to replicate in the laboratory
(Bradley 1970; Schumm & Stevens 1973), but the rwo
observations together leave little room for doubt that
selective deposition is the dominant cause of downstream
fining in aggrading systems.

Unfortunately very little is known of the actual
mechanics of this selective-deposition process, although
work is beginning on the problem (Paola & Wilcock 1989;
Parker 19914, b; Parker, in press). Rather than attempting
to incorporate an incompletely understood selective-
deposition mechanism in our model, we have chosen to use
a simple mass-balance approach to embody the role of
selective deposition in fractionating the input sediment. In
this ‘perfect sorting’ approach (Paola 1988, 1990), each
grain-size is assumed to be deposited until it is exhausted,
at which point deposition of the next size begins, and so
forth, until the end of the deposit is reached. For an input
size probability-density p(D) [A '], mass conservation for
each grain-size D [A] then implies:
oD _[o+0<n>/en a8

Ox PD)q>
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If one is interested only in the limit of progradation L, of
the coarsest fraction of the supplied material, here taken to
be gravel, then (18) is replaced by the simple mass-balance
requirement that

) = J L‘[o +9%>]dx, (19)

0

where £; is the fraction of gravel in the sediment supply.

2.4 Scaling the equations

Before solving equations (16), (17), and (19), it is helpful
to rewrite (16) in non-dimensional form. The basic idea of
this kind of preliminary analysis of the equations, which is
sometimes called ‘scaling analysis’, is that, although the
exact value of each variable at each point cannot be known
without solving the equations, it is often reasonable to
assume that the order of magnitude of each variable will be
comparable to some basic constant of the system. This
constant is called the ‘scale’ for that variable; for instance,
we expect that the scale of x will be L, the basin length.
The strategy is to non-dimensionalize each variable with
its scale; then all the derivatives become non-dimensional
and, if the scales have been chosen correctly, of order 1.
Each derivative has associated with it a group of
(dimensional) constants. By rearranging an equation in this
way, we have divided the information in it into two parts:
the group of constants that multiplies each term carries
information about the dimensions and order of magnitude
of the term, whereas the derivatives determine the detailed
shape of the solution in space and time. Analysis of the
scaling terms allows us to anticipate features of the general
behaviour of the system before a detailed solution is
determined numerically, and to understand physically
these detailed solutions once they are in hand.

The scale for each variable need not be known at the
outset. For instance, in the present case, it is not obvious
what the scale for the elevation # should be; we simply
assume the existence of a reference elevation H that is of
the order of 7. Adopting, in addition to H and L, the
characteristic scales T and o, for ¢ and o, respectively, and
by denoting non-dimensional variables with an asterisk, we
have from (16)

H\ on. [vH)\ 0'n.
00)0s + | — =|— > 20
(0] (T) o~ \I7) o 20)
where all variables are to be taken as long-term averages.
The meaning of this equation is clearer if we rearrange it
using the term on the right-hand side (the rate of
deposition) as a reference:

ool L*\ on. o'

i} P = = 21
(Q,)" +<vT) TR @D
where Q , is a characteristic transport rate [A*® '] equal
to vH/L. Two dimensionless numbers determine the

magnitudes of the sink term and the time-dependent term
relative to the sedimentation rate on the right. The first
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non-dimensional number, 6,L/Q ,, is a measure of the rate
at which cross-sectional area is created in the basin
(numerator) relative to the rate of sediment transport and
hence basin filling (denominator). The inverse of the first
nondimensional number is approximately equal to the
capture ratio of Paola (1988): the ratio of sediment flux to
the rate of creation of cross-sectional area in the basin.
Roughly, if 6,L/Q > 1, the basin is underfilled ; if <1, the
basin is overfilled and sediment exits the far end of the
basin. In the limiting case of ¢;=0, no basin forms and
(21) reduces to the standard diffusion equation as applied
in gecomorphic modelling.

The second dimensionless number on the left side of
(21), L*vT, can be viewed as defining an intrinsic
equilibrium time T,,= L*/v for the basin. The presence of
the time-scale in the denominator implies that if the basin
is set up in some initial configuration and allowed to .
develop under constant conditions, then as t— o0 it will
evolve toward an equilibrium (steady-state) configuration.
The simplest form of equilibrium is that developed when -
the sediment supply is just sufficient to keep the basin
filled; in this casc thc scdimcntation ratc balances
subsidence at equilibrium :

Ky
ox’

(22)
If the basin is underfilled, then at equilibrium the
sedimentation rate is constant in time but less than the
subsidence rate, so that the sediment surface continues to
subside. If the basin is overfilled, no steady-state configu-
ration exists, although within the basin the sedimentation
ratc asymptotically approachces (22).

The time required for the basin to reach equilibrium is
of the order of Teq=L2/v. Now let T represent the time-
scale on which one of the independent forcing parameters
of the basin (e.g. sediment flux or water supply) varies. If T
is long relative to T, then the subsidence term remains at
least comparable to the time-derivative term 07/t and the
basin responds to the imposed changes in what might be
termed a ‘quasi-equilibrium’ manner.

By analogy, one might think that for rapid changes, for
which T« T,, the right-hand side of equation (21) (the
spatial derivative) could be neglected. However, removing
the spatial derivative would reduce the order of (21), and it
could no longer satisfy all of its boundary conditions. This
apparent contradiction can be resolved only if a new,
smaller length-scale (L) arises, such that (L'Y}oT is of
order 1. (Remember that the spatial derivative was set to -
order 1 in the non-dimensionalization.) L’ is the length
scale over which the effects of the fluctuations are felt in
the basin ; we can infer that the extent of the basin that can
be affected by fluctuating conditions at one of its boundaries
is proportional to the square root of the period of the
fluctuations. L’ becomes comparable to L when the period
of the imposed fluctuations becomes comparable to 7,
Note also that if L is replaced by the new reduced length
scale L'= \/zﬁ' in the scaling term a,L/Q , for subsidence,
the subsidence term becomes small relative to the other



two as the time-scale diminishes. Thus, as the time-scale
for imposed variations becomes short, (21) can be expected
to behave increasingly like the classical diffusion equation
as it is applied to geomorphic problems.

The foregoing analysis suggests that when a basin is
subjected to cyclic changes in forcing parameters, the non-
dimensional ratio T/T,, determines which terms in the
governing equation dominate the basin response. Thus one
might expect that T, would be important in determining
the qualitative form of basin response to imposed variations.
We will refer to variations on time scales greater than and
less than 'I;q:Lz/v as ‘slow’ and ‘rapid’ variations,
respectively, and we give an example calculation of the
relevant scales in the next section. We stress that, in
thinking about 7, one must remember that it comes from
a very general scaling analysis of the governing equations

_ aimed at determining the relative orders of magnitude of

the various terms. The ratio T/T,, although it is precisely
defined, is not a parameter with high-precision significance ;
rather, it is an order-of-magnitude discriminator between
two broad regimes of basin response. In that sense, it is like
the Reynolds and Froude numbers in fluid mechanics.

2.5 Estimation of scales

As mentioned above, most of the elements of the diffusivity
are fairly well constrained. Adopting as reasonable values
=001, C;=0.7, s=2.7, and £¢=0.4, we have for the
braided case v=0.10{g> and for the meandering case
v=0.67{¢)>. The average water discharge per unit width
of basin {g) is rL,, where r if the rainfall rate and L, the
length of the catchment area (note that we are ignoring
downstream changes in (g due to rainfall along the basin
itself). For a catchment length of 10° m and a rainfall rate
of 1 m yr~' we have for the braided case, a diffusivity of
Ix10*m*yr~' and for the meandering case 7 x

10* m® yr~'. If the basin length is comparable to the
catchment length (10° m) then the equilibrium time of the
basin L*/v is of the order of 10° yr in the braided case and
10° yr in the meandering case. In general, if the catchment
length and the basin length are of similar order of
magnitude then the equilibrium times are of the order
10L/r for the braided case and 1.5L/r in the meandering
case.

2.6 Method of solution

- There are a variety of numerical methods available for

sulving equation (16) ; we usc a fully implicit method (Press
et al. 1986, p. 637) to allow for long time steps. The major
problem in finding the solution is determining the length
of the deposit for each time step. This arises because the
position of the boundary must be determined as part of the
solution to (16) for each time step. Usually the boundary
can be expected to lie somewhere between the nodes of the
computational grid. We have found, however, that position-
ing the boundary on the nearest node of a fixed grid
produces acceptably small errors in mass conservation
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(typically a few percent over 100 times steps), provided the
grid is reasonably fine. For the calculations discussed below,
we used a grid with 100 spatial steps.

In this paper we have solved equation (19) for L, to
determine the position of a single grain-size front (the limit
of transport of material coarser than some given size)
through time. It is important to note that at each time step
the gravel flux in (19) must be corrected to account for the
grain-size content of any sediment eroded within the basin
as well as the material supplied from outside.

2.7 Limitations of the model

Most of the important limitations of the model developed
in this paper are clear from the assumptions we have made
in deriving it. We make no attempt to predict the fine
details of facies distributions, nor do we attempt to predict
stochastic properties of stratigraphic response. The two-
dimensionality of our model is a limitation in two senses.
The obvious one is that we cannot treat basins with three-
dimensional geometry (either three-dimensional subsid-
ence or mulriple sources of sediment); the model also
cannot describe the whole of a system with three-
dimensional drainage, although many of the results do
apply to the two-dimensional feeder part of such a system.
A more subtle limitation imposed by two-dimensionality is
that both deposition and erosion are assumed to occur over
the entire width of the depositional system. This is probably
a more reasonable assumption for deposition than for
erosion, especially at short time scales, where erosion is
usually associated with local valley incision. Some of these
effects can be incorporated in two-dimensional modcls, but
clearly three-dimensional models will be required ulti-
mately.

Another general limitation of the model is that, in the
interests of understanding clearly the first-order dynamics,
we have left out a number of the details of fluvial processes.
In general, the effects of our simplifications are likely to be
most important for short time scales. Ribberink & Van Der
Sande (1985) have studied the behaviour of rivers over a
range of time and space scales, focusing on the effects of
non-linear terms in the momentum equation for subcritical
flows. They find that diffusion models become valid for
length and time scales above certain limiting values: the
limiting length scale is about 74y/.S,, where %, and S, are a
characteristic water depth and bed slope, respectively ; the
limiting time scale is about 2/’/(Seq0), Where g, is a
characteristic sediment transport rate. For time and space
scales below these limiting values, the bed shows various
types of wave-like behaviour.

In general, the limiting scales above which a river system
behaves diffusively are probably below the resolution of
first-order models for steep, shallow stream systems but
are significant for deep, low-gradient streams. For example,
for a stream 1 m deep flowing on a slope of 107° the
critical length for diffusion is about 7 km. However, a river
10 m deep flowing on a slope of 10~ * would have a critical
length of 700 km; in that case, non-diffusional (wavelike)
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Table 1. Values used for

model runs Mean capture ratio: 1.0

Mean diffusivity: 1 x 1072 km? yr~
Mean supply gravel fraction: 0.3
Basin length L: 100 km
Equilibrium time T,,: 10° yr

We used the following values in all runs (Figs 2, 4,5, 6 and 7)

1

Form of imposed variation : v(s) = D*(1 + 0.7*sin (27/ 7))
(where ¢ is time;; T is period; v is any of the four basic independent variables: sediment flux,
subsidence rate, gravel fraction, or diffusiviry ; and 7 is the mean value of the variable).

For all the runs, the numerical solution to equation (16) was carried out as follows:

Spatial grid interval: 1 km
Time interval: 7/100
Solution method : fully implicit

For runs with linearly increasing subsidence (Figs 2, 4, and 5) we used

Mean subsidence rate: 5 x 10~7 km yr~
Mean sediment flux: 5 x 107> km? yr~

1
1

For runs with spatially constant and decreasing subsidence (Fig. 7) we used
Mean subsidence rate: 1 x 1076 km yr ™!

Mean sediment flux: 1 x 10™* km? yr~

For slow variation (Fig. 2) we used:

1

Period of variation T (all 4 variables): 1 x 107 yr
Interval between time lines: 1 x 106 yr

For rapid variation (Fig. 4) we used :

Period of variation T (all 4 variables): 1 x 10° yr
Interval between time lines: 1 x 10* yr

For equilibrium variation (Fig. 5) we used
Period of variation T (all 4 variables): 1 x 10° yr
Interval between time lines: 1% 103 yr

behaviour could not be ignored even in large-scale basin
models.

3 MODEL RESULTS FOR SLOW
VARIATIONS

3.1 General aspects of the model runs

In the model runs, the basin length and average diffusivity
are those given for the braided case (10°mand 10*m?yr ',
respectively). All values used in the runs are given in
Table 1. We consider variation in each of the four basic
governing parameters: sediment flux, subsidence rate,
gravel fracdon in (e sediment supply, and diffusivity
(controlled primarily by the rate of water supply). The
amplitude of the variation is 709, of the mean value in
each case. The mean value of the capture ratio is 1, so on
average the basin is just kept filled with sediment. We use
equation (19) to determine the location of a single grain-
size transition, which we will take to be from gravel to sand.

In all the runs discussed in this paper, the basin is
allowed to fill with sediment under constant conditions for
a period equal to four times the equilibrium time before
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the variation is begun. At the end of this period, the
variation begins. The variables change as sin(27n¢/ T), where
tis time and T is the period of the fluctuations. Once the
variation begins, time lines are drawn every 0.17.

In all the runs presented in the next three sections, the
subsidence profile is linear with the hinge point at the distal
end of the basin. This subsidence model is unrealistically
simple, but it streamlines the computations and is adequate
to reveal the basic effects of varying the subsidence rate as
well as the other three parameters listed above. Since the
subsidence model is not the main focus of this paper, we
also ignore coupling between the sediment load and
subsidence ; that is, we have not accounted for the common
observation that sediment deposition loads the lithosphere
and thus incrcascs the subsidence rate. More detailed
examination of the effects of sediment loading in flexural
basins can be found in recent works by Moretti & Turcotte
(1985), Kusznir & Karner (1985), and Flemings & Jordan
(1989).

Webegin by presenting model results for slow variations;
that is, those for which conditions vary on a time-scale 7'
such that 7/T,,> 1. The variation occurs on a time-scale of
107 years, 10 times the equilibrium time, and time lines are
drawn every 10° yr.



3.2 Variation in sediment flux

Figure 2a shows the results of a model run as described
above in which the sediment flux varies sinusoidally and all
other variables are held constant. Vertical sedimentation
rates increase as sediment flux increases, as shown by an
increase in spacing between isochrons on the diagram.
Clastic progradation occurs (the position of the gravel-
sand transition migrates towards the basin centre as the
sediment flux increases. Clastic progradation over time is,
of course, accompanied by an overall grain-size increase in
any vertical section measured in the basin. Thus, this ‘flux-
driven’ style of progradation shows a positive correlation
between sediment accumulation rate and grain-size in
vertical sections across the basin.

This scenario represents the traditional ‘syntectonic’
interpretation of coarsening-upwards sections and gravel
progradation in alluvial basins (Rust & Koster 1984). An
increase in tectonic uplift in the source area would increase
source-area relief and thus increase sediment flux to the
basin. However, insofar as sediment flux is also affected by
climate and source-rock type, one could produce the same
response pattern through a non-tectonic mechanism.

3.3 Variation in subsidence rate

A second model run (Fig. 2b) shows what happens if basin
subsidence rate varies sinusoidally while the other variables
remain constant. As subsidence begins to increase, more
accommodation space is generated, trapping the supplied
sediment in the most proximal part of the basin while the
most distal sediments are eroded. The coarsest sediment,
being the first to deposit, is localized in the extreme
upstream end of the basin. Locally, vertical sedimentation
rates in the proximal part of the basin increase as the
gravel-sand transition migrates towards the proximal end
of the basin, in accordance with equation (19). The mean
subsidence rate then decreases, space available for deposi-
tion decreases, and the gravel-sand transition progrades
out across the basin. As in the previous case, this
progradation is associated with an increase in grain-size in
any vertical section. But for this ‘subsidence-driven’ case,
an increase in grain-size upsection is associated with a
reduction in vertical accumulation rate — exactly the
opposite of the flux-driven case described above.

The subsidence-driven case is one in which gravel
progradation is linked to a reduction in local sediment
accumnlation rate. If the suhsidence rate is directly related
to tectonic activity, then subsidence-driven gravel progra-
dation represents periods of diminishing tectonic activity;
this case might be termed ‘antitectonic’ progradation. Note,
however, that gravel progradation could be subsidence-
driven and yet syntectonic if the tectonism involved
reduction in subsidence rate. Such a case was posited by
Burbank & Raynolds (1988), who argued that blind thrusts
and folds caused local reductions in subsidence rate during
Himalayan thrusting.

Grain-size variation in alluvial basins, 1

3.4 Variation in gravel fraction

The third case we consider is that in which gravel
progradation is caused by an increase in the fraction of
gravel in the sediment supply. Such an increase could occur
because of a change in source-rock lithology, or a change
in climate. In this case (Fig.2c), sediment flux and
subsidence rate remain constant and thus the grain-size
changes upscction while the vertical sedimentation rate
remains constant. In this ‘distribution-driven’ model, there
is no correlation between vertical change in grain-size and
accumulation rate.

3.5 Variation in water supply

As discussed above, the amount of water available to the
basin is reflected directly in the diffusivity. The results of
varying the diffusivity sinusoidally can be seen in Fig. 2d.
Although the amplitude of variation is just as large as for
the variables discussed above, the imposed change in
diffusivity has almost no effect on the pattern of fill in the
basin. We will discuss the reason for this in detail below,
but the basic idea is that changes in diffusivity affect only
the sediment surface. On long time-scales, the subsidence
is much more important than the surface elevation in the
overall mass balance of sediment, so variation in diffusivity
has relatively little effect.

3.6 Summary

Clearly, on time-scales that are long relative to 7, changes
in sediment flux, subsidence rate and sorting cause the
position of the gravel-sand front to shift smoothly across
the basin. The end-member models discussed above are
distinguished by the relative timing of changes in grain-
size and vertical accumulation rate (Fig. 3). In the flux-
driven case, sedimentation rate and grain-size change in
phase with one another (Fig. 3a). For the subsidence-
driven case, sedimentation rate and grain-size are exactly
out-of-phase (Fig. 3b). In the distribution-driven case,
there 1s no phase relation between grain-size and sedimen-
tation rate (Fig.3c). In contrast to these three cases,
changes in water supply have no effect when applied over
long time-scales.

4 MODEL RESULTS FOR RAPID
VARIATIONS

‘The runs in this section were done to examine the basin
response to rapid variations in the forcing parameters ; that
is, variations with a period T such that 7/T, « 1. The runs
discussed below were made under the same conditions as
those above except that the period of variation T'is 10° yr,
a factor of 100 less than those of the previous section and a
factor of 10 less than the equilibrium time. Time lines in
this section are drawn every 10* yr.
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Fig. 2 Cross-section of a
hypothetical basin showing
the results of slow variation
(T>» T,,) in (a) sediment
flux, (b) subsidence, (c)
gravel fraction, and (d)
diffusivity. Gravel is shown
in dark grey, sand in light
stipple. Direction of
transport is from left to
right. The thin dashed and
solid lines are isochrons
drawn every 10° yr; the
heavy lines show the
basement. The form of the
variation is shown at left and
is the same for all
parameters; the intervals
represented by dashed time
lines represent maxima in
the forcing paramerer. The
conditions of the run are
given in the text and in

Table 1.
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Fig. 3 Sketch graphs showing the relation between grain-size
and local sedimentation rate for (a) flux-driven, (b) subsidence-
driven, and (c) distribution-driven coarsening.

4.1 Variation in sediment flux

The results of rapid variation in sediment flux are shown
in Fig. 4a; they are quite different from the slow case.
During times of reduced sediment flux, the upstream part
of the system is eroded as slopes are reduced to
accommodate the decreasing flux. This results in the
generation of proximal unconformities and the dispersal of
gravel far out into the basin. Thus, in contradistinction to
the slow case (Fig. 2a), rapid variation in sediment flux
results in gravel progradation during times of reduced
sediment flux. Furthermore, the form of the gravel bodies
is quite different: even though the imposed variation is
smooth and sinusoidal, the progradation takes place
abruptly, leading to a distinctive sheet-like geometry. The
retrogradation is even more abrupt, giving the whole cycle
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an asymmetric, coarsening-up form. In addition, gravel
progradation is associated with pronounced proximal
unconformities that become less well developed going out
into the basin.

4.2 Variation in subsidence rate

The results of rapid variation in subsidence rate are shown
in Fig. 4b. The general form of the basin response is similar
to that for slow variation in that the gravel front progrades
during times of reduced sedimentation rate. However, for
the same magnitude of subsidence variation, the response
of the sedimentation rate and position of the gravel front is
much weaker for rapid than for slow variation, and the
time of maximum progradation is phase-shifted somewhat
so that it takes place when the subsidence rate is increasing
rather than when it is at a minimum.

4.3 Variation in gravel fraction

Rapid variation in gravel fraction of the input sediment,
illustrated in Fig. 4c, produces an effect almost identical to
slow variation in gravel fraction : the gravel front progrades
smoothly and continuously, and there are no accompanying
changes in sedimentation rate.

4.4 Variation in water supply

The results of varying the diffusivity (and hence the rate of
water supply) rapidly are shown in Fig. 4d. In striking
contrast to the results for slow variation, rapid changes in
diffusivity producc strong cffccts similar to those of rapid
variation in sediment flux: times of increased diffusivity,
like times of reduced sediment flux, produce strong
proximal unconformitiess and thin, extensive gravel
tongues; the maximum extent of gravel progradation
occurs just before the maximum water flux, when the latter
s still increasing. The progradation is abrupt even though
the imposed variation is smooth and sinusoidal.

5 MODEL RESULTS FOR EQUILIBRIUM
VARIATIONS

Having examined basin response to sinusoidal variation in
forcing parameters for the two end-member cases of slow
and rapid variation, it is of interest to consider what
happens when the period 7 of the imposed change is equal
to the characteristic equilibrium time 7,, of the basin.
Model results for this case are shown in Fig. 5. These runs
were made under the same conditions as those above except
that the period of variation T is 10°yr, equal to the
equilibrium time. Time lines in this section are drawn
every 10° yr.

In general, as one would expect, the results for
equilibrium variation are intermediate between those for
slow and rapid variation, although they seem in general to
be closer to those for slow variation. The form of the
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hypothetical basin showing
the results of rapid variation
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Fig. 5 Cross-section of a
hypothetical basin showing
the results of equilibrium
variation (7= T,) in (a)
sediment flux, (b)
subsidence, (c) gravel

fraction, and (d) diffusivity.

Symbols are as in Fig. 2
except that time lines are
drawn every 10° yr. The
conditions of the run are
given in the text and in
Table 1.
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response for sediment flux is distinctly more asymmetric
than for the slow case, and the time of maximum
progradation is shifted towards the minimum in the
sediment flux. The response for subsidence is similar to the
slow case, but slightly weaker. The response for gravel
fraction is unchanged, and that for diffusivity shows very
weak progradation during times of increasing diffusivity
(recall that slow variation in diffusivity produces no effect).

Finally, it is of interest to establish how far one must be
from T, to have a ‘fully developed’ slow or rapid response;
this is especially important in estimating the influence of
uncertainty in estimates ot 1,, on interpretation of observed
responses in the geologic record. We illustrate the transition
from slow to rapid response as the period passes through
T,, using sediment flux, since the flux shows strong but
distinctly different responses for slow and rapid variation.
Figure 6 shows the form of gravel-front variation produced
by one sinusoidal cycle of change in flux (what is shown is
gravel front position traced from model-generated basin
cross-sections, normalized to constant total sediment
thickness), for a series of periods from slow to rapid. The
characreristic form of the respunse (o slow variation scems
to be well developed by the time the period is a factor of 2
greater than 7T, whereas the form of response to rapid
change is not well established until the period is at least a
factor of 4 below T, The depth of proximal erosion and
the distance of gravel progradation continue to increase as
the period decreases, although for most basins, our model
would not be expected to be accurate for periods far below
T,, for the reasons discussed above.

6 THE EFFECT OF BASIN SHAPE

All of the results discussed so far have been obtained for
basins in which the subsidence rate decreases linearly away
from the sediment source ; it is of interest to know whether
these results would be qualitatively different for basins
with different subsidence patterns. Although we have not
explored all possible spatial patterns, we have replicated
the runs described above for two other simple subsidence
geometries: constant, and linearly increasing across the
basin. For the sake of brevity, we will not reproduce all
these results here. While all the variables show some change
in response as the basin shape changes, only the response
to subsidence variation depends qualitatively on the shape.
Results for variation in subsidence rate for the two
additional basin shapes are shown in Fig. 7. For spatially
constant subsidence (Fig. 7a), changes in subsidence rate
produce no response at any time-scale. For spatially
increasing subsidence (Fig. 7b), there is a strong response
to slow variation, with maximum progradation occurring
during times of mimimum sedimentation rate in the
proximal part of the basin, as in the slow variation discussed
earlier. However, careful examination of Fig. 7b shows that
the minimum proximal accumulation rate for this case
occurs when the subsidence rate is a maximum, the exact
opposite of the case with spatially decreasing subsidence.
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Fig. 6 The form of the response of the gravel front to changes in
sediment flux as a function of T/ T, (given by the fraction over
each curve). The curves were traced directly from model-
generated basin cross-sections (as in Figs 2, 3 and 5) for one
complete cycle ot variation and have been normalized to the
same total sediment thickness. Input conditions were as for Figs
2, 3 and 5 except for the change in the period of variation.

Thus, for spatially increasing subsidence, subsidence-
driven gravel progradation may be ‘syntectonic’, if tectonic
activity is correlated with subsidence rate.

The origin of this change in relation between gravel
progradation and subsidence is quite subtle, and is in part
an artifact of the way the model is set up. The basic issue is
that becausc therc is no fixcd clcvation which the sediment
surface is tied, there can be no direct coupling between
sedimentation rate and subsidence rate. This would not be
the case if the sediment surface were matched to sea-level
or some other reference elevation. However, in the absence
of a base level, the only coupling between subsidence and
sedimentation is through tilting of the sediment surface,
which induces slope changes in the river system. In the
case of spatially constant subsidence, there is no tilting, so
there is no mechanism for transmitting the changes in
subsidence rate to the river system, and the sediment
surface simply rides up and down passively as the subsidence
rate varies. In reality, increases in subsidence rate in such a
system would probably be coupled to increases in erosion
of the basin margins. Thus our scenario of variation in
subsidence with constant sediment flux, although useful in
clarifying the basic mechanics, is not very realistic for this
case. This would be easy to remedy Ly coupling the
sediment flux to the relief at the basin margin.

For the case of spatially increasing subsidence, temporal
increases in subsidence rate increase the rate of tilting of
the sediment surface, so they do cause increases in
sedimentation rate. However, most of the increase occurs
in the distal part of the basin, where the subsidence rate is
highest. Since the sediment flux remains constant, this
results in a net transfer of sediment from the proximal part

of the basin to the distal part, reducing the sedimentation -

ratc in thc proximal part and causing gravel progradataion
during times of high subsidence rate.

At the risk of overcomplicating things, we note that the
foregoing discussion applies only as long as the basin does
not become overfilled. If overfilling does occur, the picture
is changed because the surface elevation beyond the basin
then acts to provide a kind of base level for the river system,
and the sediment surface can no longer ride passively up
and down on the basin floor. It is beyond the scope of this
paper to investigate this issue further. The important point
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Fig. 7 Cross-section
showing the results of slow
variation (7> T,) in
subsidence rate for basins of
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here is that, in subsidence-controlled migration, the one
abiding constant is that progradation is always linked to
decreasesin the local sedimentation rate. The complications
occur in the relation between subsidence rate and
sedimentation rate, which is qualitatively dependent on the
system geometry. In particular, some sort of fixed reference
level, in the form of an elevation boundary condition on
the sediment surface, is required to provide direct coupling
between subsidence and sedimentation.

7 DISCUSSION

7.1 Summary and discussion of model results

For each variable except gravel fraction, the form of basin
response is different for rapid variation than for slow
variation. This distinction makes clear the fundamental
role played by the equilibrium time in governing basin
response to imposed variations, for it is the equilibrium
time that determines what ‘slow’ and ‘rapid’ mean in real
time. The model results are summarized below.

Slow variation in sediment flux produces smooth
progradation and retrogradation of the gravel front
(Fig. 2a). Progradation is accompanied by increasing local
sedimentation rate so that gravel transport distance and
sedimentation rate vary in phase ; we term this ‘flux-driven’
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coarsening. In contrast, rapid flux variation (Fig. 4a)
produces abrupt progradation of the gravel front that forms
a thin, extensive gravel sheet bounded below by strong
proximal unconformities that diminish into the basin.
Although the gravel progrades abruptly, retrogradation is
even faster, so that overall a coarsening-upward vertical
signature results.

Slow variation in subsidence rate also produces smooth
progradation and reuvgradation of the gravel front
(Fig. 2b). Progradation is accompanied by reduction in
localf sedimentation rate so that gravel transport distance
and sedimentation rate are 180° out of phase ; we term this
‘subsidence-driven’ coarsening. As the period of variation
in subsidence becomes shorter than the equilibrium time,
the changes in sedimentation rate induced by subsidence
variation become weaker and also begin to lag behind the
changes in subsidence. The position of the gravel front
continues to be inversely related to the sedimentation rate,
50 its response to variation in subsidcncc is similarly
weakened.

Slow and rapid variation in supplied gravel fraction
produce similar effects (Figs 2c, 4c): smooth progradation
(during times of high gravel supply) and retrogradation,
with no accompanying changes in sedimentation rate.

Slow variation in water supply (diffusivity) produces no
effect (Fig. 2d), but rapid variation produces abrupt
progradational cycles (Fig. 4d), with extensive sheet-like
gravel units being generated during times of increasing-to-
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high water supply. The overall pattern is highly asymmetric,
broadly similar to that for rapid variation in sediment flux.

It seems clear that the way basins respond to changes in
their governing parameters can differ dramatically depend-
ing on the time-scale on which the changes occur. Note
that the cause of the change in response from slow to rapid
is the time-scale of the variation, not the sediment thickness
deposited. The overall deposit thickness changes in Figs 2,
4 and 5 because we have kept the subsidence rate constant
in all the calculations while changing the time-scale. An
explanation for this dependence of the form of the response
on time-scale can be found in the discussion of scaling
effects in section 2.4. There we showed that in the long-
term balance the most important terms are subsidence and
sedimentation rate; changes in surface topography, al-
though significant, remain smaller than the subsidence
rate, and go to zero in the case of true equilibrium governed
by (22). On the other hand, on short time-scales, the
subsidence (sink) term becomes progressively less import-
ant and (16) behaves like the conventional diffusion
equation involving only the surface topography. This can
be summarized mictapliorically by saying that slow changes
are felt in the body of the basin while rapid changes are felt
in its skin. Thus rapid changes in subsidence rate produce
weak effects because the subsidence-rate is not that
important in the short-term balance. A more intuitive way
of seeing this is to note that, for changes in the subsidence
rate to conrol sedimentation pattern, sediment must be
redistributed across the whole basin, which becomes
increasingly difficult on time scales less than the equilib-
rium time.

Using similar logic, slow changes in water supply
(diffusivity) have no effect because they affect only the
sediment surface. On long time-scales, the mass balance in
the basin is dominated by sedimentation rate and subsid-
ence, and is nearly independent of the surface topography.
On the other hand, at short time-scales, surface effects
predominate. Since changes in water supply have a strong
effect on surface configuration, they affect the short-term
pattern of sedimentation strongly. Finally, changes in
sediment flux are effective on both time-scales because the
sediment flux affects both the overall mass balance of the
basin and the surface topography. The latter effect results
from the boundary condition (17a). The reversal in form
of the response to varying flux as the time-scale changes
results from competition between the effect of the flux on
the mass balance and on the sediment surface. Over long
‘ime-scales the mass-balance effect is more important,
while on short time-scales, the surface effect predominates.
Ncie also that, since the effect of the flux on the sediment
surface originates at the basin margin and propagates
basinward, the argument made in section 2.4 about reduced
length scales comes into play: The length scale L’ over
which the variation in sediment flux can be expected to
propagate goes as \/7‘ so the effects of variation on a time
scale of 0.1 T, should be concentrated in approximately the
upstream-most 30%, of the basin. That this is indeed the
case for the sedimentation rate can be seen from inspection
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of Fig. 4a. The gravel front propagates much farther into
the interior than this, however, because of the strong
increase in total gravel flux as the gravel-rich upstream
deposits are eroded. In a sense, the behaviour of the gravel
front amplifies the variations in sedimentation rate.

7.2 The behaviour of ‘marker’ clasts in the
context of the model

One of the principal tools used in inferring source-area
tectonic history from basin sediments, especially gravels, is
the appearance in the depusit of distinct clast types
(‘marker’ clasts) that can be unambiguously associated with
a particular source-rock type (Burbank et a/. 1988 ; Jordan,
Flemings & Beer 1988). It is important to note that in
diffusive models such as the one developed in this paper,
any change in the clast composition of the source area
appears immediately across the entire gravel deposit. In
other words, if the composition of the supplied gravel clasts
changed from time step ¢, to time step ¢, , the entire gravel
unit deposited during time step ¢, would reflect the new
composition. This is becausc the diffusion modcl docs not
account for the transport dynamics of individual clasts. In
the present context, the critical point is that the migration
of gravel fronts as shown in Figs 2-7 has nothing to do
with the speed at which individual clasts are brought to the
leading edge of the front; this process is instantaneous as
far as the model is concerned. Of course, in reality, marker
clasts do take a finite time to propagate across the gravel
depositional area. The processes that govern the appearance
of marker clasts in the deposit are (1) sediment dynamics
at time-scales below the resolution of the diffusive
approximation, and (2) the time required for streams in
the source area to erode strata contributing the marker
clasts and supply them to the edge of the basin.

7.3 Applications

At this point it is not clear how vne could provide a true,
rigorous test of the results of even simple models such as
the one we have presented here. The most immediate
application of the results is as an indication of the form of
response produced by variations in each governing
parameter acting in isolation, and of the critical observations
needed to distinguishing among them. We apply the model
results to available field data in the companion paper
following this one (Part 2); here we offer some general
comments on applying the model results:

The four basic variablcs that we have studied vary
dramatically in the responses they produce at different
time-scales. This characteristic might be useful in designing
future field studies. For instance, if basins cannot respond
to changes in subsidence rate on a time scale much below
the equilibrium time, then, in effect, basin sedimentation
acts as a low-pass filter on subsidence changes. On the
other hand, the large-scale sedimentation pattern is
sensitive to changes in water supply only on time-scales
shorter than the equilibrium time. Basins thus act as high-



pass filters for variations in water supply. To apply this line
of reasoning to real basins, it is necessary to estimate the
equilibrium time 7T, and for that one must estimate both
basin length and diffusivity, at least to within an order of
magnitude. We discuss estimation of diffusivity below. It
seems reasonable, however, that at least within a single
climatic zone, basin length rather than diffusivity is likely
to be the main variable that determines the equilibrium
time. One could then hope to sharpen both palaeoclimatic
and tectonic studies by choosing basins whose sizes ‘tune’
them correctly to a given problem.

The results of our modelling make clear the basic role
played by the long-term average water discharge in
governing basin behaviour, via the diffusivity. The diffusiv-
ity is not only an important variable in its own right, but
its characteristic value helps determine the equilibrium
time, which is critical in determining how any other sort of
variation will affect basin sedimentation. One of the great
challenges of applying models such as this one to the
interpretation of sedimentary rocks is to find ways of
constraining the water supply. We suggest two basic
avenues of approach: (1) palacoclimaric estimation of
rainfall rates (from studies of paleosols, andjor fossil
assemblages) coupled with tectonic constraints on the size
of the ancient drainage area; and (2) palaeohydranlic
reconstruction of flow rates in ancient river systems. The
first method gets directly at the critical parameter (the
long-term average water supply rate), but is apt to be
imprecise, especially given that drainage divides are
generally located in uplifted areas and are thus likely to be
eroded away. As for method (2), while fairly precise
palaeohydraulic reconstructions of specific palaeoflow
events are possible, it is not clear how these could be
suitably integrated to give an estimate of long-term water
supply. Although neither approach is ideal, we think both
are worth pursuing and that together they offer an
appealing way of quantitatively integrating detailed sedi-
mentological studies with regional basin analysis.

While work continues on finding new ways of constrain-
ing the independent parameters of models such as ours, we
hope that the distinctive response patterns we have found
will be helpful to those interested in distinguishing among
the various factors that determine the pattern of sedimen-
tation in basins. Beyond these specific response patterns,
the most important general result of our work is that the
time-scale on which variations in forcing parameters occur
is a fundamental variable in itself. Before one can begin to
address, for example, questions of tectonic or climatic
controls on scdimcntation, onc must first consider both the
time-scale on which the change occurs and the character-
istic equilibrium time of the basin in question.
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