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1. Numerical model 

1.1. Supplementary methods 

We solved Equation (1) forward in time on a regular grid with periodic x boundaries 

and 
2
z, z, U = 0 at the y boundaries, equivalent to a ridgeline bounded by two 

streams with constant elevation. The initial condition was a randomly rough surface 

with relief approximately 100 times lower than the final surface, and iteration proceeded 

until z/ t=0 for all (x,y). Grids ranged from 300 80 to 300 250 points (x y) with a 

point spacing of 0.2 to 20 m. Model solutions with the range of Lc shown in Fig. 2 were 

obtained by varying D and K.  

1.2. Avoiding resolution effects 

Drainage area in landscape evolution models tends to become concentrated in 

valleys along paths one grid cell wide. If no steps are taken to compensate for this 

effect, the steady-state topography for a given set of rate parameters can depend on the 

spatial resolution of the finite difference grid. To prevent the modelled valley spacing 

from being resolution-dependent, we smoothed the drainage area field with a square 

moving average kernel at each time step. For filters wider than a few grid points but 

2 

narrower than the valleys, valley spacing is only weakly dependent on grid resolution 

and filter size (Fig. S1). The magnitude of this dependence is comparable to the 

variability among runs resulting from different initial surfaces. We performed numerical 

experiments, like that summarized in Fig. S1, to identify the range of acceptable filter 

sizes for each parameter combination used to construct the blue trend in Fig. 2, and to 

confirm that the trend is insensitive to spatial resolution. This method for avoiding 

resolution effects differs from that used in some previous studies of landscape 

evolution
8,23

, but is more broadly applicable. 
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Figure S1. Effects of grid resolution on valley spacing. Plot of modelled valley 

spacing as a function of drainage area filter size for a range of grid resolutions. Filter 

sizes correspond to odd numbers of grid points ( x, 3 x, 5 x…). Each point is the 

mean valley spacing for a set of model runs with Lc = 10.7 m. Error bars are 2 . 

 

2. Topographic measurements 

2.1. Supplementary methods 

Figure S2 shows the topographic measurements used to calculate Lc for the field 

sites discussed in the main text. We performed topographic analyses on gridded 

elevations with a horizontal point spacing of 1 m. We calculated the gradient and 

Laplacian of elevation from the coefficients of a least-squares quadratic fit to the points 
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Figure S1. Effects of grid resolution on valley spacing. Plot of modelled valley 

spacing as a function of drainage area filter size for a range of grid resolutions. Filter 

sizes correspond to odd numbers of grid points ( x, 3 x, 5 x…). Each point is the 

mean valley spacing for a set of model runs with Lc = 10.7 m. Error bars are 2 . 

 

2. Topographic measurements 

2.1. Supplementary methods 

Figure S2 shows the topographic measurements used to calculate Lc for the field 

sites discussed in the main text. We performed topographic analyses on gridded 

elevations with a horizontal point spacing of 1 m. We calculated the gradient and 
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within a 7 m radius. The hilltop Laplacian, 
2
zh, was calculated from the mean values 

within logarithmically spaced bins over the range of A| z| for which the binned 

Laplacian was roughly constant (Fig. 3a). 
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Figure S2. Measurement of model parameters from topography. a, Plot of the 

Laplacian of elevation against the product of drainage area and slope. Circles are 

means of log-transformed data within logarithmically spaced bins. Coloured circles are 

the points used to measure 
2
zh. b, Plot of slope function (Equation 5, Methods) against 

drainage area. Circles are means of log-transformed data within logarithmically spaced 

bins, and lines are least-squares fits to the binned data. 



3www.nature.com/nature

SUPPLEMENTARY INFORMATIONdoi: 10.1038/nature08174

3 

within a 7 m radius. The hilltop Laplacian, 
2
zh, was calculated from the mean values 
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Figure S2. Measurement of model parameters from topography. a, Plot of the 

Laplacian of elevation against the product of drainage area and slope. Circles are 

means of log-transformed data within logarithmically spaced bins. Coloured circles are 

the points used to measure 
2
zh. b, Plot of slope function (Equation 5, Methods) against 

drainage area. Circles are means of log-transformed data within logarithmically spaced 

bins, and lines are least-squares fits to the binned data. 
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We mapped the drainage network by starting at a threshold drainage area, which 

was determined by the square of the wavelength at which a kink in the power spectrum 

indicated a rapid decline in topographic roughness
6
, and then routing flow downslope 

with a steepest-descent algorithm. Network links with no tributaries were identified as 

first-order streams. Drainage basins were delineated by starting at the basin outlet, 

defined as the point just upslope of the junction with a second-order stream, and 

identifying all upslope points that drain to the outlet. Points showing power-law 

relationships between S
*
and A within individual basins were pooled, and D/K and m 

were calculated from an iteratively reweighted least-squares fit to the mean values of 

log10(S
*
) within bins spaced logarithmically in A (Fig. 3b). Uncertainties in Lc were 

calculated from the uncertainties in D/K, m, and 
2
zh. 

2.2. Test of topographic measurement procedure 

To verify that our method for inferring Lc from high-resolution topographic data can 

yield a negative result—i.e., a value of Lc that is inconsistent with the relationship 

between valley spacing and Lc predicted by the numerical model—we applied the 

measurement procedure to three landscapes shaped by erosional processes that are not 

well described by the model (Fig. S3). The Zabriskie Point badlands in Death Valley, 

California, consist of eroded mudstone with a mean valley spacing of 12 ± 3 m, and are 

completely unvegetated due to highly arid conditions. The steep, nearly planar slopes 

and sharp drainage divides indicate that hillslope soil transport at Zabriskie Point is 

dominated by nonlinear creep
31,32

, which is not well described by the linear diffusive 

term in Equation (1). Mettman Ridge in the Oregon Coast Range is a mountainous 

landscape underlain by sandstone, formerly forested but recently clear-cut, with a valley 

spacing of 42 ± 12 m. It is a well-documented example of a landscape influenced by 

nonlinear soil creep
31

, with straight slopes and sharp divides similar to those at 

Zabriskie point. In addition, valley incision in the Oregon Coast Range is known to be 

strongly influenced by shallow landslides, debris flows
33-37

 and, in some locations, 

deep-seated landslides
38

, processes for which no well-documented laws for long-term 

sediment flux exist, and which therefore are not included in our numerical model. Dark 

Canyon, which lies within the drainage basin of the south fork of the Eel River in 

California, is a forested landscape underlain by sandstone and mudstone, and has a 
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valley spacing of 176 ± 9 m (ref. 6). Like Mettman Ridge, Dark Canyon is steep and 

experiences both nonlinear soil creep and valley incision by debris flows. Parts of the 

Eel River basin are strongly affected by deep-seated landslides
39

 and earthflows
40

. We 

therefore do not expect the valley spacing at these three sites to be consistent with the 

scaling relationship in Fig. 2. 

a

b

c
 

Figure S3. Shaded relief maps of sites with nonlinear soil creep. a, Zabriskie Point, 

California, b, Mettman Ridge, Oregon, c, Dark Canyon, California. Tick spacing is 100 

m. For clarity, a has been enlarged by a factor of 4 relative to b and c. Laser altimetry 

data for Zabriskie Point and Dark Canyon are from the National Center for Airborne 

Laser Mapping (NCALM). 

Analysing the topography at Zabriskie Point, Mettman Ridge, and Dark Canyon 

with the same procedure used for the other study sites, we obtain the values in Table S1. 

For Zabriskie Point, with Lc = 2.9 m, the relationship in Fig. 2 predicts a valley spacing 

between 19 and 37 m, wider than the observed spacing of 12 ± 3 m. The result for 

Mettman Ridge is similar: for Lc = 9.1 m, the relationship in Fig. 2 predicts a valley 

spacing between 59 and 116 m, wider than the observed spacing of 42 ± 12 m. For Dark 

Canyon, in contrast, the predicted valley spacing of 84 to 166 m for Lc = 13.0 m is 

narrower than the observed spacing of 176 ± 9. The overprediction of valley spacing at 
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Zabriskie point and Mettman Ridge suggests that valley spacing in landscapes shaped 

by nonlinear soil creep may be narrower than in landscapes shaped by linear creep. The 

underprediction at Dark Canyon may be due to the influence of mass wasting processes 

such as earthflows or deep-seated landslides, which have the demonstrated effect of 

altering the distribution of topographic variance with respect to wavelength
41

. We 

conclude from our analysis of these three sites that our method for inferring Lc from 

topographic data is capable of identifying landscapes that have uniform valley spacing 

but are inconsistent with the model prediction. 
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